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Abstract

Augmented Reality (AR) is the process of integrating virtual elements in reality, often by mixing
computer graphics into a live video stream of a real scene. It requires registration of the target
object with respect to the cameras. To this end, some approaches rely on dedicated hardware,
such as magnetic trackers or infra-red cameras, but they are too expensive and cumbersome to
reach a large public. Others are based on specifically designed markers which usually look like
bar-codes. However, they alter the look of objects to be augmented, thereby hindering their
use in application for which visual design matters. Recent advances in Computer Vision have
made it possible to track and detect objects by relying on natural features. However, no such
method is commonly used in the AR community, because the maturity of available packages is
not sufficient yet. As far as deformable surfaces are concerned, the choice is even more limited,
mainly because initialization is so difficult.
Our main contribution is therefore a new AR framework that can properly augment deforming

surfaces in real-time. Its target platform is a standard PC and a single webcam. It does not
require any complex calibration procedure, making it perfectly suitable for novice end-users.
To satisfy to the most demanding application designers, our framework does not require any
scene engineering, renders virtual objects illuminated by real light, and let real elements occlude
virtual ones. To meet this challenge, we developed several innovative techniques.
Our approach to real-time registration of a deforming surface is based on wide-baseline fea-

ture matching. However, traditional outlier elimination techniques such as RANSAC are unable
to handle the non-rigid surface’s large number of degrees of freedom. We therefore proposed a
new robust estimation scheme that allows both 2–D and 3–D non-rigid surface registration.
Another issue of critical importance in AR to achieve realism is illumination handling, for

which existing techniques often require setup procedures or devices such as reflective spheres.
By contrast, our framework includes methods to estimate illumination for rendering purposes
without sacrificing ease of use.
Finally, several existing approaches to handling occlusions in AR rely on multiple cameras or

can only deal with occluding objects modeled beforehand. Our requires only one camera and
models occluding objects at runtime.
We incorporated these components in a consistent and flexible framework. We used it to aug-

ment many different objects such as a deforming T-shirt or a sheet of paper, under challenging
conditions, in real-time, and with correct handling of illumination and occlusions. We also used
our non-rigid surface registration technique to measure the shape of deformed sails. We vali-
dated the ease of deployment of our framework by distributing a software package and letting
an artist use it to create two AR applications.

Keywords: Augmented Reality, non-rigid surfaces registration, deformable object detection,
geometric and photometric camera calibration, occlusion segmentation.
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Réalité augmentée pour surfaces non
rigides

Le terme réalité augmentée désigne l’intégration d’éléments virtuels dans la réalité. Dans
la majorité des cas, elle consiste à insérer des images de synthèse dans une vidéo filmée en
temps réel. La réalité augmentée implique le repérage spatial de l’objet à augmenter par rap-
port à la caméra. Des capteurs spécifiques, comme des suiveurs magnétiques ou des caméras
infra-rouges, peuvent effectuer ce repérage. Cependant, ce matériel est coûteux et compliqué à
utiliser. Il reste donc difficile d’accès pour le grand public. D’autres méthodes se basent sur des
marqueurs d’apparence similaire à des code-barres. Elles présentent néanmoins un inconvénient
majeur lorsque l’aspect visuel est important, car elles altèrent l’apparence des objets à augmen-
ter. Dans ce contexte, des progrès récents en vision par ordinateur rendent possible le suivi et la
détection d’objets en exploitant uniquement leurs caractéristiques propres. Cette technique reste
encore peu répandue en réalité augmentée, à cause de la maturité encore insuffisante des logi-
ciels disponibles. En outre, aucune de ces méthodes ne permet le traitement efficace de surfaces
déformables, l’initialisation étant particulièrement problématique.

La contribution principale de nos travaux est donc un nouveau système de réalité augmentée
gérant correctement, et en temps réel, des surfaces qui se déforment. Le matériel nécessaire
se réduit à un ordinateur standard et à une webcam. De plus, notre système ne requiert pas
de procédure de calibration compliquée, il convient donc parfaitement au grand public. Notre
système peut aussi satisfaire les concepteurs d’applications les plus exigeants. En effet, il ne
nécessite aucune modification de la scène à augmenter, affiche les objets virtuels éclairés par la
lumière réelle et permet à des éléments réels de masquer les éléments virtuels.

Pour atteindre cet objectif ambitieux, nous avons développé plusieurs techniques innovantes :

– Notre approche de détection en temps réel d’une surface déformée se base sur la mise en
correspondance de points entre une image modèle et l’image provenant de la caméra. La
mise en correspondance est automatique, mais imparfaite, et exige donc l’élimination des
données aberrantes. Mais les algorithmes traditionnels, comme RANSAC, sont incapables
de gérer le nombre important de degrés de liberté d’une surface déformable. Nous pro-
posons donc un nouvel algorithme d’estimation robuste qui permet le repérage spatial de
surfaces déformables, à la fois en deux et en trois dimensions.

– Le réalisme en réalité augmentée exige également une bonne gestion de l’éclairage des
objets virtuels par la lumière réelle. Les techniques existantes ont souvent besoin de procé-
dures compliquées de mise en place, ou d’outils comme des sphères réfléchissantes. Notre
système intègre également des méthodes d’estimation de l’éclairage, mais sans sacrifier sa
facilité d’utilisation. La réalité augmentée résultante est donc à la fois accessible au grand
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public et réaliste.
– Notre approche permet de masquer partiellement l’objet virtuel lorsqu’un élément réel le
cache. Les approches habituelles de gestion d’occultations se basent sur plusieurs caméras
ou ne peuvent gérer que des occultations causées par des objets modélisés à l’avance. La
nôtre ne nécessite par contre qu’une seule caméra et modélise en temps réel les objets
occultants.

Nous avons intégré ces trois composants dans un système cohérent et flexible. Nous l’avons uti-
lisé pour augmenter des objets variés, comme un T-shirt ou une feuille de papier. Notre système
augmente des surfaces pendant qu’elles se déforment, dans des conditions difficiles, en temps
réel et avec une gestion correcte de l’éclairage et des occultations. Nous avons également utilisé
notre technique de detection de surfaces non rigides pour mesurer la forme de voiles déformées.
Finalement, nous avons validé la facilité de déploiement de notre système en distribuant un logi-
ciel. Il a été utilisé entre autres par une artiste pour créer deux applications de réalité augmentée.

Mots-clés : Réalité augmentée, repérage spatial de surfaces non rigides, détection d’objets
déformables, calibration géométrique et photométrique de caméra, segmentation d’occultations.
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Notations

Scalar i, r

Point Individual 3–D or 2D points are noted with Roman characters: p, v

Correspondence A single correspondence between 2–D points c0 and c1 is written: c =
{c0, c1}

Set of correspondences capital: C =
{

c1, ..., c|C|
}

Vector Bold: v

Matrix Roman capital: M

θ Parameter vector

vi Vertex number i

ε Energy function

q = Tθ(p) The surface to screen transformation Tθ : ℜ2 → ℜ2 sends the point p lying on the
original surface to screen location q. The transformation is parameterized by θ.

bi(p) Barycentric coordinates of point p on the undeformed model.

r Radius of confidence

ρ(δ, r) Robust estimator

m The model image, also called reference or template image. The pixel at location p is written
mp.

u The input image.

s The augmented image showing synthetic geometry or surface albedo.

ep The irradiance reaching surface point p.
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1. Introduction

The popularity of Augmented Reality (AR) has been growing during the last two decades, helped
along by the increasing power of computer graphics hardware, the decreasing prices of webcams
and camcorders, and, last but not least, the increasing robustness of computer vision algorithms.
This is particularly true of recent approaches to rigid object detection and tracking for which
many effective and real-time solutions have been proposed [69, 63, 88, 61]. These methods
have reached the maturity necessary for augmented reality applications that require automation,
robustness, accuracy, and speed. By contrast, sound registration of non-rigid surfaces still lags
behind, which limits the range of objects that can be handled. Non-rigid tracking solutions
exist [5, 40, 24, 21, 3], but they tend to be slow and automated initialization remains an issue for
which there is no convincing real-time solution.
This is the problem we address in this thesis. We propose a framework for augmenting images

of a non-rigid surface filmed with a standard camera. Because geometric registration is only one
of the steps required by augmented reality, our framework includes vision-based tools not only
for geometric registration of deformable surfaces, but also for recovering illumination, allowing
real light to affect virtual objects, and for handling occlusion to allow real objects to hide virtual
ones.
The resulting framework lets us augment fast and realistically images of non-rigid surfaces

acquired by an ordinary camera. We took a particular care to ensure its genericity and ease
of deployment. It was successfully used by augmented reality application designers, such as
artists, allowing them to concentrate on application design, rather than dealing with technical
issues [95]. Furthermore, the algorithms we developed are applicable in a wider context that
includes 3–D surface measurement and video surveillance.

1.1. Contributions

Prior to our work, no AR system could properly augment a deformable surface seen by a single
ordinary camera. Our key contribution is therefore to make AR possible and realistic in such a
challenging context: we augment in real-time images of deforming surfaces using a camera as
the sole sensor. We achieve this ambitious goal by developing several new algorithms, which,
together, form a consistent and flexible AR framework. Its main components are geometric
registration, both in two and three dimensions, illumination handling, and occlusion handling.
Compliance to a common set of constraints ensures good interoperability between the compo-
nents. They can all handle both rigid and non-rigid surfaces. They do not require any engineering
of the scene. They run in real-time. They require a single camera but can take advantage of ad-
ditional ones, if available. Finally, they deliver high visual quality without sacrificing ease of
use, both for end-users and for application designers.

15



1. Introduction

Achieving this has required a number of technical advances because state-of-the-art tech-
niques were not up to the challenge:

Registration We propose a method to fast and robust non-rigid surface detection. To run in real-
time, our method relies on wide-baseline matching of 2–D feature points. Given
such correspondences, if the target object were rigid, detecting it and estimating
its pose could be implemented using a robust estimator such as RANSAC [34].
However, for a deformable object, the problem becomes far more complex because
not only pose but also a large number of deformation parameters must be estimated.
We therefore contribute a robust optimization scheme designed to work in these
conditions, resulting in an accurate, fast, and robust non-rigid surface registration
algorithm.

Illumination We propose new approaches to allowing virtual objects to reflect real light. For full
3–D virtual objects, we construct a radiance map. For a virtual 2–D layer lying on
the real surface, we locally estimate illumination. The novelty of these approaches
comes from the fact that neither requires specific devices or complex calibration
steps, as most state-of-the-art approaches do. Therefore, our methods allow novice
end-users to enjoy virtual objects shaded by real illumination.

Occlusion We push visual quality for AR even further by allowing real objects to hide virtual
ones. Our contribution consists in a new solution to occlusion segmentation that
does not require multiple views or any other device, and that can handle unmodelled
occluding objects.

Combining these methods results in a framework able to augment non-rigid surfaces, reflecting
real illumination on virtual elements, and respecting the occlusions caused by real objects.

1.2. Organization of this Document

The thesis is organized as follows. The next chapter reviews AR basics, investigates its require-
ments, and sketches a generic framework. Chapter 3 discusses the importance of augmenting
non-rigid surfaces and defines assumptions on top of which we designed solutions that fit into
our framework. Chapter 4 introduces our approach to geometric registration and calibration,
notably our robust estimation scheme. Chapter 5 covers illumination issues. Chapter 6 shows
how real objects can be made to occlude virtual ones. Chapter 7 presents the results obtained
with our framework. Chapter 8 discusses the impact and limitations of our work and concludes
the thesis.
As opposed to a traditional habit, we review related work at the beginning of each chapter,

rather than in a separate one. Thus, a broad overview of state-of-the art methods for AR is
presented in Section 2.3, while more Computer Vision related methods for registration are re-
viewed in Section 4.1, for handling illumination in Section 5.1, and for handling occlusions in
Section 6.1.
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2. About Augmented Reality

Virtual Reality has become popular and widespread during the 20 last years, thanks in particular
to the rapid improvement of computer graphics. It is now mature enough to immerse users
in virtual environments and allows video-game players to evolve in complex and realistic but
entirely artificial worlds. By contrast, AR combines real and virtual by adding synthetic elements
to the real world, or by altering or hiding real ones. More specifically, in video-based AR, a
camera captures a scene, a computer then analyzes the images and renders the virtual objects at
the correct location and under the appropriate lighting conditions. The resulting image is shown
to the user who can then interact with both real and virtual parts of the scene.

2.1. Applications

We begin by presenting the most representative applications of this technology. Some of them
have already been demonstrated and used. We believe that the others soon will be.

Home Entertainment A recent example illustrates the interest of this business for aug-
mented reality: The video game The Eye of Judgment published in 2007 by Sony Computer
Entertainment Inc for the PlayStation 3 console (Figure 2.1). In this game, playing cards are
augmented with virtual creatures. The software relies on black and white patterns printed on
cards border to detect them and compute their orientation. Using such patterns is acceptable in
this context because the target audience is fond of emerging technology.

Figure 2.1.: The Eye of Judgment, a Sony game that mixes virtual creatures and cards using
augmented reality. A camera films the game board on which the user disposes cards.
On the TV screen, virtual characters come to life and stand on the real cards.

17



2. About Augmented Reality

Figure 2.2.: Mobile phones and other embedded systems can also augment reality. Courtesy of
Daniel Wagner [115].

Mobile Applications As depicted by Figure 2.2, the recent increase in performance of mo-
bile devices, such as PDAs or mobile phones, allows them to support AR applications [114]. AR
reaching such common and ubiquitous devices will lead to numerous applications. Imagine a
mobile device acting as an electronic guide for tourists, that could augment street signs with their
translations, or monuments with visual annotations. The tourist could also use a conventional
paper map showing static information at a very high resolution, and see an augmented object
by pointing the device towards the place of interest. In other words, AR is a powerful way to
supplement a paper map with dynamic and interactive content.
Augmented reality on a mobile platform also offers advertisement opportunities. By pointing

the device towards an advertisement displayed in a street, a user could see a live augmentation
presenting further information. This would turn a simple static display into an animated and
interactive one.

Tourism and Culture In theme parks and in museums, visitors can be made to experience
virtual objects or characters in a real environment. Augmenting antique ruins with a virtual re-
construction of the original building can help visitors to grasp the magnificence of past cities,
without altering the ruins [113]. Virtual characters dressed in historical costumes playing in an
ancient residence can also greatly improve visitor’s experience, as demonstrated in the Norwe-
gian Museum of Cultural History. A method to superimpose pictorial artwork with projected
imagery is proposed in [10]. It allows overlaid graphics and animations to tell stories about a
painting.
The French company Total Immersion designed a show called The Future is Wild for the

theme park Futuroscope, in Poitiers, France. It allows visitors to experience a virtual safari,
set in the world as it might be 200 millions years from now. The animals of the future are
superimposed on reality. They come to life in their surrounding and react to visitors gestures.
Augmented reality has a strong potential to impress spectators. Therefore, it can be integrated

into company presentations, university lectures, or other live communication events. For exam-
ple, a narrator can present a real object which is then augmented live in the background. It is
precisely what Intel did in January 2008 at the Consumer Electronic Show, Las Vegas, to unveil
a range of new processors, including chips designed for so-called "mobile Internet devices". The
impact of the demonstration was guaranteed because the technology did not require any marker
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2.1. Applications

Figure 2.3.: The depicted AR system is commercially available and allows training firemen in
realistic yet safe situation. Users see in their head mounted display harmless and
virtual fire and smoke. Courtesy of Resolve Fire & Hazard Response Inc.

or visible elements beside a PDA equipped with a camera.

For such applications, an unintrusive and realistic augmented reality is best. The better real
visual effects such as illumination and occlusion are reproduced on virtual objects, the more
natural will be user’s feeling.

TV and Movie Industry Adding virtual elements in TV shows is very popular. For instance,
the company Orad proposes solutions for augmenting sports events with advertisement or addi-
tional information, such as distance measures on a soccer field.

Augmented reality is a convenient way of providing real-time special effects preview for film
making. Thus, directors can quickly have a clear idea of the final result, without having to wait
that the computer graphics team finishes its work.

Training, Visualization and Maintenance Training firefighters, policemen, or first-aid
workers to handle emergency situations can also benefit from AR. As depicted by Figure 2.3,
the trainees can be shown catastrophic but virtual events superimposed on the real environment,
such as a virtual fire in a real building, or a virtual flood in a real city.

Augmented reality can also be used to visualize inaccessible objects. For example, city work-
ers could see augmented pipes in the streets before starting to dig a hole. In another context,
augmenting a patient’s skin with virtual organs and tumor could help a surgeon in his work, as
depicted by Figure 2.4.

Augmented reality can also be used to give maintenance instruction. The instructions to repair
a complex device such as a printer or a car engine can be provided through AR, as depicted by
Figure 2.5. The direct overlay of instructions over the part of interest can be much more efficient
than reading documentation on paper.

This AR application list is of course not exhaustive, and many more are still to be invented.
Because many fields can benefit from AR and because young and immature technology already
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Figure 2.4.: An application of AR to surgery. This prototype proposes to use AR to display 3–D
data during endoscopic surgery. Courtesy of Christoph Bichlmeier [9].

Figure 2.5.: An application using AR to show maintenance instructions directly on the broken
device. Courtesy of Gerhard Reitmayr [87].
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meets success, we believe that AR techniques will improve in the next years, allowing larger
diffusion and popularity.

2.2. Challenges

In spite of all these potential applications, AR is not yet as ubiquitous as Virtual Reality, mostly
because the technology is far less mature and AR research, unlike VR research, still focuses
more on developing basic techniques rather than their applications. This is because integrating
virtual elements in a real picture is far more complex than synthesizing an image from scratch:
The real world is uncontrolled and has to be sensed and “understood”, while virtual worlds are
simply built to suit the application’s requirements. This requirement for automated machine
understanding of reality is one of the great challenges of AR and is worth explaining in more
details.

A typical video-based AR system repeatedly performs the following steps: Image acquisition,
scene modeling, virtual object rendering, and display. While the loop is running, the user can
interact with real objects and see results on both real and virtual elements. As we will see,
additional sensors can be used to make the job easier, but the camera remains the most important
one.

Given these sensory inputs, the AR system must perform three critical tasks:

Registration To properly draw a virtual object in a picture, it is necessary to know where to
draw it, at what size, and under which perspective. Therefore, an AR system must constantly
model the position of the scene with respect to the camera. This is known as registration and
must be accurate because little errors quickly produce an unrealistic effect.

Illumination Modeling Rendering a virtual object in a real scene will lack realism if it does
not reflect the real illumination environment. Therefore, a practical AR solution must be able to
model real illumination conditions.

Occlusion Handling If something real lies between the camera and the virtual object, the
latter should only appear partially in the augmented image. To this end, the system either needs
knowledge of the 3–D scene, which is costly to provide, or a way to decide at runtime what parts
of the virtual object are occluded.

Registration, illumination modeling, and occlusion handling have to be performed on-line,
since camera motion, illumination and object visibility can change non deterministically. They
also have to be obtained in real time and with delays as short as possible to permit comfortable
interaction. In most cases, if the user had to wait even half a second for the system to react, he
would probably quickly loose interest in using it.
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Figure 2.6.: An AR application based on ARTag [32] that register bar code-like markers. The
user wears a special costume which is augmented with a virtual armor.

2.3. Related Work

Having identified three challenges that video-based AR systems must meet, we briefly review
current techniques dedicated to solving them.

Registration An abundant literature is available about registration. Our goal here is not to
give a complete review but rather to describe classes of solutions.
To measure the pose of a moving object or camera, one can attach to it a dedicated sensor

to measure pose and orientation. Among such sensors that have successfully been used for
AR purposes are magnetic sensors, inertial measurement units that combine accelerometers and
gyroscopes, and retro-reflective markers filmed using infra-red cameras. They offer robustness.
However, they are expensive, cumbersome to setup, and they might limit the volume in which
tracking is possible. Moreover, their accuracy is not always sufficient for AR, and video-based
techniques have to complement them.
Computer vision based approaches directly analyze the image content to infer the camera pose

and rotation with respect to an object visible in the image. An option is therefore to introduce
in the scene one or more object that are specifically designed for automated detection. Many
augmented reality systems rely on such markers that often look like bar-codes. Registration
of natural and known objects is also possible, often by exploiting their 3–D model. Some ap-
proaches use the edges of a CAD model [57]. Others are based on the texture naturally present
on the object [63].
Some tracking algorithms do not even need to know what they are looking at; They simul-

taneously track the camera movements and reconstruct a 3–D representation of the scene [58].
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These approaches solve a problem often called Simultaneous Localisation and Mapping and can
only deal with rigid environments.

Illumination Inlaying a virtual object into a real picture requires some knowledge of the real
illumination. In the pioneering work of [78], geographic position, date and time of picture acqui-
sition was used to determine sun’s orientation, allowing for realistic shading of outdoor scenes.
Some approaches estimate the environment beforehand, requiring a full 3–D model of the visi-
ble scene, which usually implies some manual intervention [27, 68, 41]. Others rather make use
of specific instruments. Debevec takes several pictures of a spherical mirror under different ex-
posures [23]; Sato et al use a pair of images taken with stereo wide-angle cameras [93]. Bimber
et al use projectors and cameras to capture reflectance information from diffuse real objects and
to illuminate them under new synthetic lighting conditions [11].
On-line estimation of dynamic illumination environment is also possible, for example by com-

bining a spherical mirror on a marker. Image analysis of such a device provides both the pose of
the virtual object and its light environment [55].

Occlusion One possible way AR systems have to let a real object occlude a virtual one is
to use a depth sensor attached to the camera. The depth information is then used as a Z-buffer:
Pixels showing a real object closer than the virtual one are left unmodified. Depth sensors
include stereo pairs [118, 42], trifocal cameras, and laser range scanners.
Other methods assume that potentially occluding objects are known and modeled in 3–D.

Their registration allows the system to compute a Z-buffer, which solves the problem. However,
this presumes that the environment is static and has been completely modeled beforehand.
Finally, some approaches do not rely on computing depth buffer. Instead, they use reasoning

on contours [8] or semi-interactive outlining of occluding objects [60].

2.4. A Generic Framework for Augmented Reality

We have seen that a variety of approaches is possible to address AR issues, each with strengths
and weaknesses. When designing a specific AR application, the developer has several options
to choose from. This choice should be conditioned by the answers to the following questions:

Devices What are the available devices? Is a single, uninstrumented camera the only available
device for registration? Or is it possible to use multiple ones, and dedicated sensors?

Scene engineering Is it permissible to engineer or instrument the scene to augment, for ex-
ample by painting a marker on the augmented object?

Visual quality How important is it to account accurately for illumination effects and occlu-
sions?

Ease of use How knowledgeable are the end users expected to be?
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Single
camera

No scene
engineer-
ing

Visual
Quality

Ease of
use

Home applications ++ + + ++
Museums + ++ + ++
TV/Movie + ++ +
Mobile ++ + + ++
Shows ++ +

Training, Visualization + ++

Table 2.1.: The requirements of augmented reality applications. A “++” in a cell denotes that the
corresponding criterion is necessary for the application. A “+” denotes an optional
criterion: The application would benefit from satisfying the constraint, but it is pos-
sible without it. An empty cell denotes an irrelevant criterion. Obviously, real-time
registration is a requirement shared by all augmented reality applications.

In this work, we did not attempt to design a single AR application. Instead, we created generic
building blocks that could serve in any AR context. Our goal is to allow AR application designers
to concentrate on authoring rather than on solving technical issues by letting them use generic
off-the-shelf solutions that are as widely applicable as possible. With this goal in mind, we
answered the questions introduced above in the following manner:

• We want to develop methods that work without specialized registration devices. Only
a single standard camera is required. If more cameras are available, they can improve
accuracy, but that must remain optional.

• We want to handle natural objects without having to instrument the scene.

• To achieve realism, the visual quality should be high and we should model the effect of
real light on virtual objects and their occlusion by real objects.

• The end users should not have to be experts and should not have to follow complex cali-
bration procedures or to perform manual tracker initialization.

On top of these requirements remains of course the time constraint. AR application should be
interactive, completely automated, and real-time.
An AR system that could do all this reliably would certainly be generic. Table 2.1 highlights

this by listing the requirements of different application classes and by rating the importance of
each one of these constraints. It states for example that a single camera is the only acceptable
device for home and mobile applications, for practical and economic reasons. A discreet AR
technology that does not require visible markers is useful for all kind of applications, but spe-
cially for museums and for shows. In a museum, the original objects should not be altered. For
best impact during a show, AR technology should remain invisible to give more visibility to the
result. Visual quality is similarly important everywhere, except for technical visualization which
prefers clarity to realism. Ease of use is important in all application involving untrained users.
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Table 2.1 summarizes the requirements and confirms that our target AR system would suit
many application classes. In this work, we therefore tried to keep these constraints in mind
when developing algorithms.
From the AR application author point of view, such genericity can have a cost: An overcon-

strained system might not reach the performances of an ad hoc solution. However, we will show
that this performance loss can be minimized by using well-designed algorithms. Furthermore,
the ease of deploying a generic system as opposed to developing a specific solution usually
outweighs any drawbacks, since it allows designers to spend time on authoring the application,
rather than solving its technical issues.
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3. Augmenting Deformable Surfaces

By contrast to AR involving rigid objects, we are not aware of any interactive AR application
involving deformable surfaces that predate our publication in 2005 [84]. Yet, it is an important
topic, as evidenced by the many papers published on this topic since then [116, 66, 28, 47, 40,
123, 50].
In this chapter, we start by distinguishing 2–D from 3–D approaches to deformable surface

augmentation and discuss their respective strengths and weaknesses. We then review the dif-
ficulties that must be overcome to achieve real-time AR for non-rigid surfaces and then list its
most important applications. Finally, we define the goals and assumptions we base our work on.

3.1. The Third Dimension

Augmented reality can be achieved either in two or in three dimensions. In 2–D, the goal is
to modify the color and texture of real objects without changing their geometry. In 3–D, the
augmented objects do not have to lie on existing ones: Both geometry and texture can be virtual.
Figures 3.1 and 3.2 depict 2–D and 3–D augmented reality.
Choosing two or three dimensions has strong implications while designing an augmented re-

ality system, most obviously for registration. Recovering a 2–D geometric transformation from
an image is far less ambiguous than a 3–D one. In pathological cases, several very different 3–
D configurations can lead to very similar image projections, making recovery by minimization
subject to many local minima. Moreover, a 2–D geometric registration does not require camera
calibration, because it handles pose and projection together, as a single problem. In 3–D both
are dissociated, and recovering pose and shape requires the intrinsic parameters of the camera,

Figure 3.1.: Augmenting a deforming sheet of paper with a 2–D cartoon character. Left: Input
image. Right: Augmented image. The virtual drawing bends with the paper, is
shaded appropriately and is partially occluded by the hand holding the page.
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Figure 3.2.: Augmenting a deforming sheet of paper with 3–D objects. In this application, the
user can change the path of the electric arc connecting the virtual poles by deforming
the sheet of paper.

adding complexity. However, working in object space rather than in image space also has ad-
vantages. 3–D surface deformations have a true physical meaning, unlike their 2–D projection.
This makes handling self-occlusions much easier. A 3–D model will be able to correctly predict
and locate hidden areas just by observing visible ones. By contrast, a 2–D model will often let
the hidden part float.
Illumination handling is also easier in 2–D, because illumination information is present in

each frame. The real surface required for retexturing naturally reflects real light. Thus, when
augmenting a single pixel showing a particular surface area, illumination can be deduced from
the original pixel itself. In 3–D, by contrast, virtual objects do not have a real counterpart and
therefore do not reflect real light. In this case, an estimate of the illumination environment is
necessary to illuminate virtual objects appropriately.
Handling occlusions is also more complex in 3–D than in 2–D. When a real object occludes a

virtual one that lies on a real surface, observing whether the surface is visible or not is sufficient.
In 3–D, there is no real surface to observe. Virtual and real objects can intersect. Thus, a depth
estimation is required for proper occlusion handling.
Because the choice of working in two or three dimensions depends on the application, we

present methods for both. In cases for which modifying the texture of real objects is enough, our
2–D algorithms provide efficient registration, illumination, and occlusion to virtual elements. In
cases of augmentation with a 3–D virtual object whose geometry does not match any real one,
our set of 3–D algorithms can be used.

3.2. Required Developments

To understand the implications of augmenting deformable surfaces, we first review the difficul-
ties to overcome and then see what are applications of their solutions.

Registration To the best of our knowledge, no algorithm published before 2005 could prop-
erly detect and register non-rigid surfaces. Some could track them, given the position in the
previous frame, but all require manual intervention or pre-defined starting location for initial-
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ization [19, 4, 3, 17, 26, 43]. A few could detect a non-rigid surface and register it without an
initial estimate, but not accurately and efficiently enough for augmented reality purposes [5, 31].
Fast and automated initialization is crucial for AR, since it is key to fluent interaction. This
unresolved initialization issue might seem surprising, given that registration of rigid or articu-
lated objects has been extensively studied. We believe this is because non-rigid surfaces raise
several difficult issues, the most important of which is the large number of degrees of freedom
required to represent their deformations. Furthermore, recovering the configuration of a known,
deformable surface from a single view is ambiguous because different shapes might produce
similar image projections.
What can we rely on to address these issues and achieve geometric registration fast enough for

interactive applications? Modeling possible shape deformations with physical surface properties
or statistical learning greatly help reducing the number of degrees of freedom. The original
snakes and their extensions to surfaces did this by introducing quadratic regularization terms [56,
38]. An alternative is to use dimensionality reduction techniques to learn shape models from
training databases [20]. In this work, we used both methods. Quadratic regularization terms
are sufficient for 2–D non-rigid registration. Training from automatically generated databases
allows handling of the third dimension.
We also relied on some Computer Vision advances, such as fast wide-baseline feature match-

ing techniques that have been successfully used for rigid object detection [63]. The process
of establishing correspondences does not change much when going from rigid objects to de-
formable ones. However, a novel approach was required to actually register the surface based on
these correspondences, because traditional robust pose estimation algorithms used in the rigid
case do not trivially extend to the non-rigid one. In Chapter 4, we introduce this new approach
to robust estimation that can handle the added degrees of freedom.

Illumination Recovering illumination for augmented reality is not an easy task. In the case of
a deforming object, the problem is made even more complex by the fact that surface orientation
changes inhomogeneously. The object may also cast complex shadows on itself. Moreover,
we operate in a framework that forbids dedicated hardware for illumination estimation, which
eliminates many existing techniques.
Because we use a single camera as sensor, we do not attempt to build a full illumination

model. Instead, we simply observe illumination effects and handle them as they are. This is
particularly appropriate for retexturing, in which augmentation is achieved by only modifying
the texture of real objects. In that case, the geometry of real and virtual scenes are identical
and illumination at a particular surface point can be recovered by examining the corresponding
pixel. Illumination can then be reproduced on the augmentation to realistically change the object
color. This simple approach, presented in Chapter 5, is well adapted to monocular augmentation
of non-rigid surfaces, because it can handle complex effects.

Occlusion Because we want a system that can work using a single camera, obtaining depth
data for occluding virtual objects is difficult. However, given a known surface that we can reg-
ister, rendering it produces an image comparable to the camera output. By comparing these two
images, we can segment occluded areas and occlude virtual objects appropriately. In Chapter 6,
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Figure 3.3.: Our non-rigid augmented reality technology can be used to augment the same logo
printed on different surfaces. Here, the ICCV 2003 logo is detected as well on a
T-Shirt as on a mug.

we introduce the corresponding segmentation algorithm.

3.3. Applications

In the previous chapter, we have introduced a number of existing AR applications. We now
discuss a range of new ones that our ability to handle deformable surfaces will make possible.

Medical Applications Medical imaging techniques such as Computer Tomography or Mag-
netic Resonance Imaging have changed the way surgery is planned and executed. They reveal,
without intrusion, the inside of a patient, resulting in large amounts of 3–D data whose visual-
ization is an important issue. Due to data size and complexity, surgeons can only observe the
images during the operation preparation phase. During surgery, the practitioner has to mentally
link the images with the patient body, as a traveller recognizes landmarks to locate himself on a
map. This process might lack accuracy and, in case of endoscopic surgery, is made even more
difficult because the only available view is limited. As already explored more than ten years
ago [2, 44] and more recently [35], AR can play an important role in this domain by showing
the surgeon information automatically registered with the patient body. He could for instance
virtually see organs through the patient skin, thereby helping him to drive his endoscope towards
the target location.
Visualization of medical data with AR has the advantages that registration can be automated

and that dynamic data can be displayed live. However, registration is complex because a body
is not rigid. Even under complete narcosis, breath causes organs to move within the body.
Therefore, proper augmentation requires non-rigid skin tracking, from which the location of
organs can be deduced. In [79], an experiment conducted in real conditions showed that an
average precision of 9.5mm can be reached with a rigid model. Using non-rigid registration
techniques such as ours could clearly improve accuracy of registration, thereby making AR
practical for medical operations implying a deforming body.
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Augmenting the human body has more medical applications, many of them are only practical
if deformations are properly handled.

Advertisement Live insertion of advertisement during sport event broadcasts represents an
important market. Companies such as Orad proposes commercial solutions to this end. How-
ever, their system is limited to planar area of uniform color. Our approach to non-rigid AR
could extend target surfaces to player clothes. For instance, T-shirts of football players could be
augmented with dynamic advertisement.
AR also offers advertisement opportunities through mobile phones. Nowadays, almost every

mobile phone is equipped with a camera. Users could point their handy to an advertisement
board showing a particular logo. After detection and registration, the device could show virtual
elements enhancing the original advertisement. Detection in this case is made difficult by the
fact that the logo could be printed on a planar board, a cylindrical one or other merchandising
goods such as a T-shirt or a mug. However, our non-rigid AR framework can treat the logo
as deformable and detect it wherever printed. Figure 3.3 depicts how our system detected and
registered a logo printed both on a mug and on a T-shirt.

Entertainment Video games such as The Eye of Judgment demonstrated the entertainment
capability and commercial viability of traditional AR. Augmenting non-rigid surfaces such as
clothes or deforming paper is then a natural extension. During webcam-based communication,
users could wear virtual elements such as jewels, company logo, or animated cartoons. Video
games could also animate pictures on paper, mimicking the moving pictures of the Daily Prophet
newspaper, in the Harry Potter movies. The possibility of augmenting non-rigid surfaces opens
many new perspectives.

Deformation Measurement Our non-rigid detection algorithm has potential applications
beside augmented reality. It can serve as a measurement system to compute the shape of a
non-instrumented, known, deformable surface, simply from pictures. An example of such a
use is at the origin of this work: Measuring the shape of a spinnaker during navigation. This
is challenging, because the spinnaker is about 500 square meters. It keeps deforming. It is
partially elastic. It is not possible to instrument it, because instrumentation weight would bias
the measures. Lasers have difficulties to handle sun light and the sail’s semi-transparency. It
is also difficult to find a viewing angle to shoot the spinnaker entirely on the same image, due
to its semi-circular shape. However, thanks to our non-rigid detection algorithm, measuring
such a sail is now possible for Alinghi, the Swiss team for the America’s cup. As depicted by
Figure 3.4, an off-line study of pictures can bring accurate but sparse measures for improving
sail design. On-board, real-time measurements can help sailors to optimize trimmings. Our
method is adapted to both cases.
Sails are not the only surfaces whose deformation can be measured. A car during a crash

test can also be considered as a deformable surface. An airplane’s wings also deform during
flight. Automatic observation of watch straps during wear tests is another potential application.
Our vision-based approach is a powerful deformation measurement tool. It has the important
advantage not to require any instrumentation of the observed surface.
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Figure 3.4.: The author and his colleague André Mazzoni measuring the shape of a Spinnaker.
Photo: Alain Herzog.

As we have seen, several fields can directly benefit from augmenting non-rigid surfaces. Since
we now have a rough idea of how it extends the AR perspectives, we can define our goals more
precisely.

3.4. Thesis Goal and Basic Assumptions

The goal of this Thesis is to solve the registration, illumination, and occlusion problems for non-
rigid surfaces augmentation under the constraints stated in Section 2.4: Using a single camera
and, optionally, additional ones, not engineering the scene, providing both visual quality and
ease of use. We made our design choices to come up with solutions that satisfy these constraints.
The first choice is to rely on fast wide-baseline matching as a basis for registration [63, 81,
80, 62]. Since it requires a textured model to train the system, we focus on a single known
object1. We then achieve tracking by detecting the pattern in each frame, thus avoiding manual
initialization and drift.
To establish feature correspondences, the object has to be textured. To satisfy our con-

straints, the procedure to create the textured model should be easy. In our implementation,
this is achieved by taking a single picture of the surface in a known configuration, which is easy
enough for a novice user.
To handle non-rigid surfaces effectively, we place a few constraints on their geometry. The

first is linked to wide-baseline matching; It requires the surface to be locally planar, which is true

1This contrasts with Simultaneous Localization and Mapping (SLAM) approaches that build a world representation
at runtime [58], but usually assume the world to be rigid and would typically discard non-rigid surfaces as outliers.
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(a) (b)

(c) (d)

Figure 3.5.: Suitability of some objects for augmentation. (a) Our framework might have trouble
with the lack of texture of the chair. (b) Considering the plant as locally planar is
not a good approximation; our framework is thus unable to augment it. (c) and
(d) Several common objects that perfectly fulfill conditions for augmentation or
measurement.
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for most non-rigid surfaces. The second constraint applies to the surface topology: Wework with
surfaces without holes. Such surfaces have some interesting properties. They are continuous and
their span of possible shapes can be modeled efficiently with regular hexagonal 2D meshes or
with a linear combination of deformation modes. These choices are generic enough to cover a
wide range of objects, such as those depicted in Figure 3.5(b).
In short, we assume that the texture of the target surface is known and abundant and that its

geometry is know, locally planar, and continuous. These assumptions are sufficient to create
methods that works for most applications we presented above.
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Our goal is to superimpose virtual material over a real and potentially non-rigid object in such a
way that the virtual elements appear to be glued to the real ones. Achieving this requires perfect
recovery of the 2–D or 3–D motions and deformations of the target object. This is the issue
we address in this chapter, bearing in mind that we want solutions that fit in the framework we
defined in Section 2.4. It states that the only mandatory registration device is a single camera.
Multiple ones, if available, can improve accuracy but remain optional. It also assumes that
the object geometry and its texture are known. Moreover, augmented reality requires real-time
registration. Thanks to recent computer vision developments, this challenging problem can be
addressed using wide-baseline feature matching.

In the following, we review related work and explain the general principles of using wide-
baseline correspondences to detect objects. We then present a robust estimation scheme that is
able to eliminate outliers while handling the large number of degrees of freedom of deformable
objects. We will see that it makes both 2–D and 3–D non-rigid surface detection possible. As
we have seen in Section 3.1, the choice of working with two or three dimensions depends on the
application. It has a significant impact on the algorithms and we therefore present different ones
for both cases.

4.1. Related work

Many approaches to registering a model on an image have been proposed. Some feature-based
algorithms first establish correspondences and then find the best transformation explaining them,
while eliminating outliers. Others simultaneously solve for both correspondence and registra-
tion, without the need for correspondences and with or without using feature characterization.
Finally, some techniques do not even rely on features. We review related techniques briefly
below and discuss why they have not yet been shown to be suitable for real-time detection of
deformable objects.

4.1.1. Feature-Based Registration

These approaches rely on establishing correspondences between image-features of the target
object and those that can be found in an input image in which it is to be detected. These corre-
spondences are then used to estimate the transformations. Figure 4.1 depicts detected features
on an image, and Figure 4.2 the correspondences obtained by matching them with the ones of
another view.
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Figure 4.1.: Detecting feature points on an image. The circles’ size represents the pyramid level
at which points have been detected.

Establishing Correspondences Our method relies on establishing wide-baseline corre-
spondences between a training image and an input one. To be useful, correspondences have to
be insensitive to light and viewpoint changes, as well as to some amount of non-rigid deforma-
tion.

Among the many matching techniques that exist, we tested three: SIFT [69], shape context
descriptors [7], and a classification-based method detailed in Appendix A and published in [80,
62, 64].
Even if these algorithms differ in speed, number of correspondences, and quality, our ex-

periments show that the effectiveness of our robust estimation scheme is independent from the
specific technique used to establish the point correspondences. However, only the classifica-
tion based technique has proved fast enough for our purpose, real-time detection without loss of
accuracy.

From Correspondences to Detection Whatever the matching technique used, the cor-
respondences can then be used to detect the object in different ways. Since matching is never
perfect, they require robustness to potential outliers.

The simplest is to eliminate outliers and find a globally consistent interpretation using a ro-
bust estimator. Having each local match vote for a global transformation is the approach used by
the Hough transform and its many variations. This is effective for rigid objects but impractical
for deformable ones because it would require far too many degrees of freedom to represent all
possible transformations into a vote accumulator. The same can be said of the popular RANSAC
algorithm [34]: With 25% of outliers and 100 degrees of freedom, 1012 samples are required to
guarantee with 90% probability that at least one sample does not contain outliers [48]. As illus-
trated by Figure 4.3, RANSAC complexity is exponential with respect to degrees of freedom,
because it relies on drawing a minimal group of correspondences, free of error.
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Figure 4.2.: Correspondences established automatically and validated with a RANSAC process
that finds the homography relating the model image (left) and the target image
(right).
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Figure 4.3.: This plot shows the number of RANSAC iterations required to reach a 95% prob-
ability of success, as a function of the minimum number of samples required to
estimate model parameters. The three curves account for 25%, 30%, and 35% of
outliers in the correspondence set. In practice, we often have to deal with even
higher rate.
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An alternative strategy is to proceed iteratively. TPS-RPM (thin plate spline - robust point
matching, [17]) and EM-ICP (expectation maximization - iterative closest point, [43, 26]) are
two well-known representatives of the family of algorithms that simultaneously solve for both
correspondence and transformation using an iterative process. At each step, the current trans-
formation estimate is first used to establish correspondences and assign weights to them, and,
then, is refined using those correspondences. These methods use an entropy term—be it called
temperature parameter, scale or blurring factor, or variance—that is progressively reduced. It
controls the assignment of weights to the correspondences and has an important role in insuring
convergence towards a desirable solution. As will be discussed in more detail in Section 4.2.2,
our algorithm follows a similar strategy but makes use of local characterization to reduce the
correspondence problem difficulty and to achieve real-time performance.

In [7], a method designed to compute a distance between shapes is presented. Shape con-
text descriptors provide correspondences which are established one to one using bipartite graph
matching. Although this method copes with some outliers and slightly different numbers of fea-
tures detected on both shapes, it is not designed to extract objects from a cluttered background
or to handle scale changes.

Image exploration [31] is another strategy that hooks on a first set of correspondences and
then gradually explores the surrounding area, trying to establish more matches. It can handle
deformable objects but this complex process is slow and takes several minutes on a 1.4 GHz
computer.

4.1.2. Pixel Level Registration

For objects such as faces whose deformations are well understood and can be modeled in terms
of a relatively small number of deformation parameters, fitting directly to the image data without
using features is an attractive alternative to using correspondences because it allows the use of
global constraints to guide the search. This has been successfully demonstrated in the context
of non-rigid tracking [24, 21, 3, 97, 40] but typically requires a good initialization because the
criteria being minimized tend to have many local minima.

These methods are complementary to the one proposed here: They exploit more of the tex-
ture and therefore tend to be more accurate. However, they require the initial estimate such as
the one our algorithm can provide. There are in fact relatively few others that can do this for
deformable objects. One of them has been proposed in [46] but requires that the whole outline
be detected, which severely limits its scope. Another is the tracking of [66] that exploits the
repeating properties of a near regular texture to discover new texture tiles in new frames.

Finally, the recent work presented in [116] is related to ours in two ways. First, it registers
a texture composed of a few colors, typically 3 or 4, by comparing color histograms. Then,
it modifies the texture on the deformed surface, while handling illumination changes. This
approach to retexturing differs from ours in that we avoid limiting the number of colors present
on the surface by introducing some irradiance smoothing, which yields real-time performance
on both color or gray level images.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4.4.: In order to achieve surface detection, we use a model image (a). Then, our method
computes a function mapping the model to an input image (b). To illustrate this
mapping, we find the contours of the model using a simple gradient operator and we
use them as a validation texture (c) which is overlaid on the input image using the
recovered transformation (d). Additional results are obtained in different conditions
(e to i). Note that in all cases, including the one where the T-shirt is replaced by a
cup (j), the white outlines project almost exactly at the right place, thus indicating a
correct registration and shape estimation. The registration process, including image
acquisition, takes about 100 ms and does not require any initialization or a priori
pose information.

4.2. 2–D Non-rigid Surface Detection

To detect a potentially deformable object, we rely on establishing correspondences between a
model image in which the deformations are small and an input image in which they may be large.
To this end, we use the fast wide-baseline matching algorithm discussed in Appendix A. Given
a set C of correspondences between the two images, many of which might be erroneous, our
problem can be formally stated as follows: We are looking for the transformation TS mapping
the undeformed model surfaceM into the deformed target one TS (M) and for the subset G ⊂ C
of correct matches such that the sum of the squared distances between corresponding points in
G is minimized while the deformations remain as smooth as possible. Figure 4.4 depicts some
of such transformations our system is able to recover.

4.2.1. 2–D Surface Meshes

We represent our modelM as a triangulated 2–D mesh of hexagonally connected vertices such
as the one shown in Figure 4.5. The position of a vertex vj is specified by its image coordinates
(xj , yj). The overall shape is therefore controlled by a state vector θ that is the vector of all x
and y coordinates. Given θ and the barycentric coordinates bi(p) of image point p that belongs
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(a) (b) (c) (d)

Figure 4.5.: Comparing three different keypoint matching algorithms. (a) Model image and val-
idation texture shown in white. Results using: (b) Real-time classification trees, (c)
shape context descriptor reimplementation, and (d) SIFT.

(a) (b) (c)

vi
vj

vk

Figure 4.6.: 2D mesh models. (a) Vertex neighborhood in an undeformed hexagonal mesh. (b)
Two deformations that are not penalized. (c) Two penalized deformations. Defor-
mations resulting from perspective projection resemble those in (b) and are therefore
much less severely penalized than those resulting from erroneous matches.
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4.2. 2–D Non-rigid Surface Detection

to a specific facet (v1, v2, v3) of the undeformed mesh, we define the mapping

Tθ(p) =

3
∑

i=1

bi(p)

[

xi

yi

]

, (4.1)

where xi and yi are vertex coordinates of the deformed mesh.
The mesh deforms to minimize the objective function

ε(θ) = λDεD(θ) + εC(θ) , (4.2)

where εC is a data term that takes point correspondences into account, εD is a deformation
energy that should be rotationally invariant and tend to preserve the regularity of the mesh, and
λD is a constant discussed later. We give in Section 4.2.4 a Bayesian interpretation of ε(θ) and
the following derivations.
We take εD(θ) to be an approximation of the sum over the surface of the square second

derivatives with respect to the x and y coordinates. More specifically, let E be the set of vertex
index triplets (i, j, k) such that (v1, v2, v3) form two connected and collinear edges, as illustrated
by Figure 4.6(a). Since the undeformed meshM has equidistant vertices, we have

∀(i, j, k) ∈ E : vi − vj = vj − vk , (4.3)

and therefore write

εD(θ) =
1

2

∑

(i,j,k)∈E

(−xi + 2xj − xk)
2 + (−yi + 2yj − yk)

2 . (4.4)

εD(θ) approximates the squared directional curvature of the surface as long as the vertices re-
main roughly equidistant and its value grows with the length difference of every two collinear
connected edges.
This regularization term serves a dual purpose. First it convexifies the energy landscape and

improves the convergence properties of the optimization procedure. Second, in the presence of
erroneous correspondences, some amount of smoothing is required to prevent the mesh from
overfitting the data, and wrinkling the surface excessively. As illustrated by Figure 4.6(b,c), εD

is appropriate for this purpose because it tolerates 2–D affine motions but penalizes shape de-
formations. Of course, both those produced by perspective distortions and by the actual surface
deformation tend to increase εD . However, this increase is insignificant when compared to those
that spurious deformations resulting from erroneous matches could produce.
Equation 4.4 can be rewritten in matrix form as

εD(θ) =
1

2

(

xTK′
T
K′x + yT K′

T
K′y

)

, (4.5)

where K′ is a matrix containing one row per triplet in E and one column per mesh vertex. The
row corresponding to triplet (i, j, k) is filled with zeroes except for locations i, j and k that
contain -1, 2, and -1, respectively. By replacing K = K′

T
K′ in Equation 4.5, we have:

εD(θ) =
1

2
(xT Kx + yT Ky) . (4.6)
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To minimize ε(θ), we use the semi-implicit scheme so successfully introduced in the original
snake paper [56]: We look for a minimum of the energy and therefore for solutions of

0 =
∂ε

∂x
=

∂εC

∂x
+ Kx ,

0 =
∂ε

∂y
=

∂εC

∂y
+ Ky . (4.7)

Since K is positive but not definite, given initial vectors x0 and y0, this can be solved by in-
troducing a viscosity parameter α and iteratively solving at each time step the two coupled
equations

Kxt + α(xt − xt−1) +
∂εC

∂x

∣

∣

∣

∣

x=xt−1,y=yt−1

= 0 ,

Kyt + α(yt − yt−1) +
∂εC

∂y

∣

∣

∣

∣

x=xt−1,y=yt−1

= 0 ,

which implies

(K + αI)xt = αxt−1 −
∂εC

∂X

∣

∣

∣

∣

x=xt−1,y=yt−1

,

(K + αI)Yt = αyt−1 −
∂εC

∂y

∣

∣

∣

∣

x=xt−1,y=yt−1

.

Because K is sparse and regular, solving these linear equations using LU decomposition is fast
and upon convergence xt ≈ xt−1 and yt ≈ yt−1 . This iterative scheme therefore quickly yields
a solution of Equation 4.7, even when starting with completely random guesses for x0 and y0 as
will be shown in Section 4.2.5.

4.2.2. Correspondence Energy

Minimizing εC , the data term of Equation 4.2, tends to deform the mesh so that it matches the
target object in the input image. This is achieved as follows.
Let C be a set of correspondences between the model and the input image. Its elements are

of the form c = {c0, c1} ∈ C, where c0 represents the 2–D coordinates of a feature point in the
model image and c1 the coordinates of its match in the input image. For the sake of generality,
we allow potential matches between a point in the first image and multiple points in the second,
so that the corresponding c0 may appear in several elements of C. We write

εC = −
∑

c∈C

wcρ (‖c1 − Tθ (c0)‖ , r) , (4.8)

where ρ is a robust estimator whose radius of confidence is r and wc ∈ [0, 1] a weight associated
to each correspondence. In our experience the choice of ρ is critical to ensure the elimination
of outliers and convergence towards the desired minimum while the choice of the wc has much
less impact, as will be discussed in Section 4.2.5.
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Figure 4.7.: The ρ function of Equation 4.9 is quadratic for distances smaller than the radius of
confidence, elsewhere it is zero.
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We take the robust estimator to be

ρ(δ, r) =

{

3(r2−δ2)
4r3 if δ < r

0 otherwise
. (4.9)

As shown in Figure 4.7, its shape is that of a quadratic ridge that gets narrower and taller when
r decreases. In other words, r acts as a confidence measure. When it is large, most correspon-
dences, potentially including poor ones, fall within this broad ridge of confidence and are given
some weight. As r diminishes, ρ becomes more peaked and selective. This formulation has the
following advantages:

• The quadratic behavior of ρ within the ridge of confidence yields a function εC that is
easy to minimize.

• ρ is normalized so that
∫∞
−∞ ρ(x, r)dx = 1 ∀r > 0 , which means that the εC term

computed with any r values remain commensurate to the λDεD term of Equation 4.2.
Therefore, we do not need to adjust either the λD parameter or the wc weights of Equa-
tion 4.8. This is in contrast to methods such as SoftAssign [17, 117] in which the surface
rigidity must be progressively reduced according to a schedule that is not necessarily easy
to synchronize with the annealing of r and may change from case to case.

• ρ has finite support so that correspondences that fall outside the radius of confidence are
completely ignored and can be tagged as invalid.

These properties of the ρ estimator are what make the straightforward approach to optimization
described below so effective.

4.2.3. Optimization Schedule

Minimizing ε therefore results in a mesh that moves towards the desired solution but whose
progression can be blocked by outliers. To overcome this, we introduce a simple optimization
schedule in which the initial radius of confidence r0 = 1000[pixels] is progressively reduced at
a constant rate η = 0.5: rt = ηrt−1. For each value of r, we minimize ε and use the result as
the initial state for the next minimization.
As discussed in Section 4.2.1, at each iteration of our semi-implicit optimization scheme, we

evaluate the derivatives of εC . In this context, the fact that ρ has derivatives whose magnitude is
inversely proportional to r is very beneficial: At the beginning when r is large, the gradients of
εD are comparatively larger than those of εC , thus preventing erroneous matches from crumpling
the surface while allowing correct and consistent ones to produce the right global deformation.
As the optimization progresses and r decreases, the ρ derivatives and consequently the gradients
of εC become larger. The triangulation starts bending as appropriate and the influence of the
outliers progressively decreases.
The algorithm stops when r reaches a value close to the expected precision of the matches ex-

pressed in pixels, typically one or two. Such a deterministic algorithm is guaranteed to converge
but the result might be wrong, for example because the target object is completely occluded. To
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4.2. 2–D Non-rigid Surface Detection

decide whether or not to believe the result, we simply count the number of correspondences that
fall within the ridge of confidence of our ρ estimator. As will be shown in Section 4.2.5, this
criterion is surprisingly effective at distinguishing successes from failures.

4.2.4. A Probabilistic Interpretation

We compute the Tθ mapping from the undeformed model surface into the deformed target one
by minimizing the ε(θ) energy of Equation 4.2. From a strictly theoretical point of view, this is
the right thing to do if ε(θ) is proportional to the negative log-likelihood of p (Tθ | I), where I
represents the current image.
In practice, there is no feasible way to precisely estimate p (Tθ | I) in general. However

we show that under a very reasonable and limited set of hypotheses ε(θ) is indeed a good ap-
proximation of the log-likelihood. Since they are close to being satisfied in the real world, this
clarifies the assumptions that our algorithm makes and helps explain why it actually works.

Approximating the Log-Likelihood Bayes’ formula yields

p (Tθ | I) ∝ p (I | Tθ) p(Tθ), (4.10)

− log p (Tθ | I) = − log p (I | Tθ) − log p(Tθ), (4.11)

up to a constant. Taking the − log p(Tθ) to be the εD deformation energy of Equation 4.6
amounts to giving a higher prior to smooth surfaces, which is standard practice when modeling
deformable surfaces. The relationship between the − log p (I | Tθ) term and the εC energy of
Equation 4.8 is less obvious and needs to be examined more carefully.
Since the position of the keypoints in the input image depends only on the deformation that

the surface undergoes, it is legitimate to treat each point ci
1 on the input image as independent

from each other given Tθ. If the target object is sufficiently textured, we can also assume that
the information provided by the keypoints extracted from I is sufficient to condition it. We can
therefore write

p (I | Tθ) = p
(

c1
1, ..., c

n
1 | Tθ

)

=
∏

i

p
(

ci
1 | Tθ

)

. (4.12)

Each p
(

ci
1 | Tθ

)

term can be computed as the disjunction over the matching possibilities :

p
(

ci
1 | Tθ

)

=
∑

j p
(

ci
1, ci

1 ↔ cj
0 | Tθ

)

+

p
(

ci
1, c

i
1 unmatchable | Tθ

)

,
(4.13)

where ci
1 ↔ cj

0 denotes the binary variable “is c
i
1 corresponding to the point c

j
0 on the model?”.

ci
1 can either correspond to any keypoint extracted from the model image or be a keypoint that
is on the background or on the target object but not detected in the model image. We write
p(ci

1, c
i
1 unmatchable | Tθ) as a uniform distribution of parameter λ which allows for outlier

matches. We have

p
(

ci
1, ci

1 ↔ cj
0 | Tθ

)

= p
(

ci
1 | ci

1 ↔ cj
0, Tθ

)

× p
(

ci
1 ↔ cj

0 | Tθ

)

.
(4.14)
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In our implementation, we take the second term p
(

ci
1 ↔ cj

0 | Tθ

)

to be equal to 1 when it is

likely that ci
1 corresponds to cj

0, 0 otherwise. This choice is based solely on appearance and is
made by our feature point recognizer [63]. A more complex expression measuring how similar
the points look could have be retained, but we chose this one for simplicity. Note that several cj

0

points can yield p
(

ci
1 ↔ cj

0 | Tθ

)

since we retain multiple correspondences for a single point.

The first term p
(

ci
1 | ci

1 ↔ cj
0, Tθ

)

is taken to be equal to N (Tθ(c
j
0) | ci

1,Σc1), and models

the geometric relation and represents the uncertainty resulting from mapping cj
0 on ci

1 according
to Tθ as a normal distribution of covariance Σc1 and mean ci

1. Its theoretical value could be
derived using standard covariance propagation formulas asΣc1 = JTθ

ΣTθ
J⊤Tθ

+Jc0Σ0J
τ
c0+Σ0,

where Jc0 = ∂c1
∂c0
, JTθ

= ∂c1
∂θ , and Σ0 is the expected uncertainty of the extracted keypoint

locations. Representing the uncertainty of the current estimate of Tθ as a normal distribution of
covariance ΣTθ

then yields an analytical expression of Σc1 as a function of ΣTθ
. In short, we

can rewrite the logarithm of the probability of Equation 4.13 as

− log p
(

ci
1 | Tθ

)

=

N i
∑

k=1

logN (Tθ(c
jk

0 ) | ci
1,Σci

1
) + λ (4.15)

where the cjk

0 are the potential matches of c
i
1.

The expression of Equation 4.15 being unwieldy for optimization purposes, we seek an ap-
proximation with a quadratic formulation to ensure the good behavior of the minimization pro-
cess.
Let us first consider the case where ci

1 has only one potential match, which means N i =
1 in Equation 4.15. The log-likelihood can then be approximated either by the Tukey robust
estimator [51] or even more simply as

− log p
(

ci
1 | Tθ

)

∝
{

‖ci
1 − Tθ(c

j1
0 )‖2 if ‖ci

1 − Tθ(c
j1
0 )‖2 < r2

r2 otherwise
,

(4.16)

where r is a threshold that depends on Σc1 . This is justified by the fact that when computed
sufficiently far from the mean, the Gaussian value is negligible with respect to λ. Because Σc1

is depending on values difficult to estimate, namely Σ0 and ΣTθ
, it is difficult to have a good

estimate of Σc1 , and in practice, a fixed threshold is used. However it is expected that the error
on Tθ represented by ΣTθ

is reduced after each iteration. Our method, by regularly reducing
the radius of our robust estimator, enforces this fact while ensuring convergence. Our robust
estimator is a scaled and translated version of the classic function of Equation 4.16. Large
radius values correspond to spread, low Gaussian distribution and large errors for Tθ, and small
radius values correspond to peaked, high Gaussian distribution and small errors for Tθ.
When ci

1 can potentially have multiple matches, which means N i > 1 in Equation 4.15, we
have shown experimentally that all of the schemes discussed in Section 4.2.5 yield similar re-
sults. They correspond to different ways of computing the probability p

(

ci
1 | Tθ

)

. It is relatively
easy to see that taking all the weights wi equal to 1 assumes that the different Gaussians do not
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overlap when they are not negligible compared to λ. This is obviously wrong particularly at the
beginning of the minimization when the radius is large, both in practice and in our synthetic ex-
periments. Apparently it does not really affect the minimization. The ICP and EM-ICP methods
both take into account the different hypotheses for one model point: ICP takes the input image
feature closest to the reprojected model points. The EM-ICP version normalizes the probabilities
such that ∀m :

∑

i p
(

ci
1 ↔ cm

0 | Tθ

)

= 1. In SoftAssign, the normalization is not only done
over all image points, but also over all model points, thus enforcing one to one correspondences.
This method is more accurate but takes more time to compute.

Validity of our Hypotheses The above derivation highlights the implicit hypotheses that
our choice of energy function entails. Some are standard and widely accepted: For textured
objects, the image information can be summarized by keypoints that are assumed to be indepen-
dent from one another given a transformation, and the prior on the shape parameters favors the
smoothest deformations. In fact, we effectively make only two non-standard assumptions:

1. We assume that the uncertainty on the estimate of Tθ regularly decreases as the minimiza-
tion progresses, whereas previous approaches aim at estimating this uncertainty from the
optimization result. Not only is it legitimate to assume the uncertainty is reduced dur-
ing optimization, but our experiments make us think it actually helps the optimization to
converge. This is corroborated by the results in [88].

2. Our implementation implicitly assumes that the uncertainties associated to several pos-
sible matches of a keypoint are independent, which clearly is too strong an assumption.
However, as shown by the experiments of Section 4.2.5, weakening it increases the com-
putational cost without significantly improving performance.

4.2.5. Algorithm Properties

In this section, we use synthetic data to illustrate the effectiveness of our implementation choices.
More specifically we show that our algorithm is insensitive to parameter choices, insensitive to
initial conditions, and effective at rejecting false matches.
Figure 4.8 depicts our approach to creating synthetic data for these experiments. We fed our

algorithm with manually established correspondences between a model image in which the sheet
of paper is flat, and the image of Figure 4.8(a) until we obtained the 600-vertex deformed mesh
of Figure 4.8(b), which projects correctly over its whole surface. We treat this mesh as our
reference, which can be viewed as the ideal result that can be expected from our algorithm. In
the remainder of this section we will use different sets of correspondences, randomized initial
conditions, and modified parameter settings. They produce different results that can then be
compared to our reference. Proceeding in this manner ensures that the deviations we measure
are strictly related to what we are trying to measure, as opposed to pose dependent problems.

Measuring Success We define three objective success criteria:

C1 90% of the mesh vertices are within 2 pixels of those in the reference mesh.

47



4. Geometric Registration

(a) (b) (c)

Figure 4.8.: Image and meshes used for our synthetic experiments. (a) Original image. (b)
Reference mesh computed using hand-picked correspondences. (c) A random initial
configuration.

C2 50% of the mesh vertices are within 2 pixels of those in the reference mesh.

C3 At least 90% of the valid correspondences given as input are correctly labeled as such by
the robust estimator, as discussed in Section 4.2.2.

Given that the test image is of dimension 1024 × 768, C1 and C2 rate the algorithm’s accuracy
and C3 its ability to discriminate valid correspondences from spurious ones. The 90% figure
in C1 eliminates cases where a substantial part of the mesh is incorrectly reconstructed, even
though the algorithm may have done a good job on the rest, a case that C2 labels as correct.
To test our algorithm, we ran it about one hundred thousand times with random initial condi-

tions, such as the one of Figure 4.8(c) that is very far from the solution, and using synthetic sets
of correspondences containing varying numbers of valid matches and percentages of erroneous
ones.

Accuracy and Robustness Figure 4.9 depicts the success rates according to the C1, C2,
andC3 criteria introduced above as a function of the number of valid correspondences and of the
outlier rate. In each plot, the color depicts the percentage of results that meet the corresponding
criterion. The black wiggly lines represent level lines in this probability landscape. Note that
in all three plots, they are nearly vertical for outlier rates up to 90%, thus indicating that the
performance does not significantly degrade before then. Given that C1 is much more stringent
thanC2, it is natural that it requires more valid matches to achieve the required level of precision.
To recover 50% mesh vertices location, 40 matches are enough and 120 for 90%. This is very
encouraging considering that the mesh has 600 vertices, which would imply 1200 degrees of
freedom in the absence of regularization constraints. C3 is the less demanding of the three
criteria and requires less than 15 to 20 valid correspondences. However, success in terms of C3

does not guarantee accuracy for large outlier rates because, even though the algorithm still finds
most of the inliers, it starts mistakenly tagging outliers as valid matches, which degrades the
precision.
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Figure 4.9.: Probability of success according to the three criteria of Section 4.2.5 as a function
of the number of valid input matches, on the horizontal axis, and the outlier rate, on
the vertical axis. White indicates values close to one and black close to zero.
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Figure 4.10.: Self diagnostic ROC curves. We accept a detection result based on the number of
matches tagged as valid by our robust estimator. We plot one curve for each one
of the three criteria of Section 4.2.5. For each one, as the threshold for accepting
a result is lowered, both the false-positive rate, on the x-axis, and the true-positive
rate, on the y-axis, increase.

Self Diagnostic So far, we have compared our results against a manually obtained reference
mesh. In practice, the algorithm has to self-diagnose its own successes and failures in the absence
of any such reference. As a substitute, we use the absolute number of matches that are tagged as
valid by the ρ estimator of Equation 4.9 as a measure of success. In other words, our algorithm
declares a successful detection when the number of valid matches is above a given threshold. In
Figure 4.10, we plot the corresponding ROC curves according toC1,C2, andC3. These curves
indicate an excellent correlation between “objective” success, as measured by comparison to
a reference result, and “subjective” success, as measured by the number of matches tagged as
valid.

One limitation of the current approach, however, is that we only implemented a global success
measure: The surface is either completely found or not at all. An interesting extension would
be to measure partial success, for example in cases where the surface is partly occluded, by
checking sub-areas as opposed to the whole surface.
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Disambiguating Multiple Matches Recall from Section 4.2.2 that a point from the model
image can have several potential matches in the input image. One can simply rely on the pro-
gressively decreasing r radius of confidence of the ρ estimator to disambiguate those cases.
Alternatively one could use a more sophisticated weighting scheme, an option we explore here
by setting the wc weights of Equation4.8 in one of the five following ways:

1. wc = 1 for all correspondences,

2. wc = 1 for the closest match, and zero to all others as in ICP,

3. as in EM-ICP [43], with σ = r
3 :

wc =
exp(−‖c1−Tθ(c0)‖2/2σ2)

P

d∈C,do=co
exp(−‖d1−Tθ(d0)‖

2/2σ2)
,

4. a variation of EM-ICP in which the Gaussian is replaced by ρ:

wc = ρ(‖c1−Tθ(c0)‖,r)
P

d∈C,do=co
ρ(‖d1−Tθ(d0)‖,r) ,

5. a weight computed by normalizing rows and columns of the correspondence matrix, as in
SoftAssign [17].

Figure 4.11 summarizes the result of this experiment. We used 150 valid matches and a
variable number of spurious matches. We plot success rates according to the C1 criterion as a
function of the percentage of outliers. Note that these curves correspond to a vertical slice of
Figure 4.9(a) and are very close to each other. For our specific purpose, but obviously not in a
more general context, their respective performances are almost indistinguishable, but not their
computational costs. In our real-time implementation, we therefore use the simplest one and set
all wc to one.

Parameters and Initial Conditions

We now turn to the influence of our parameter choices and of the initial conditions. We show
that they influence the speed at which the algorithm converges much more than its final result.

Regularization Weight In the ε(θ) total energy of Equation 4.2, the relative influence of
the regularization and observation terms is controlled by the λD parameter. It represents surface
stiffness: The larger it is, the more deformations are penalized. If it is too large, legitimate
bending might be prevented. If it is too small, the mesh may wrinkle excessively and treat some
spurious correspondence as valid. In Figure 4.12, we again use a fixed number of valid matches
and plot success rates according to the C1 criterion as a function of the percentage of outliers
and of the λD value used to perform the computation. For outlier rates below 60%, and even up
to 80%, λD can be chosen in a very wide range without significantly affecting the results. As
the outlier rate increases, larger λD values appear to give better results. It is to emphasize these
large values of λD that we chose to plot

1
λD
on the vertical axis of the graph.
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Figure 4.11.: Comparing weighting schemes. Success rate as a function of erroneous correspon-
dences percentage, for each one of the five schemes described in Section 4.2.5.
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Figure 4.13.: Number of individual Levenberg-Marquardt steps to achieve convergence. (a)
For several values of η, number of steps required to minimize the total-energy of
Equation 4.2 for each successive value of r. (b) Similar plot for nine initial states,
chosen to be increasingly far from the reference mesh.
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Deterministic Radius Reduction In our algorithm, the confidence radius r of Equation 4.9
is decreased by a factor η after each minimization. Even though this deterministic approach
might seem simplistic, we prefer it because, in practice, it is very hard to evaluate a new radius
from currently valid matches. For example, a similar problem is solved in [88] using an expec-
tation minimization (E-M) approach and the authors have to "give a kick downwards" to their
blurring factor when E-M converges too early. Here we show that the value of η has relatively
little impact on the optimizer’s behavior.
To this end, we randomly chose one particular set of correspondences and ran the optimizer

several times using η values ranging 0.3 and 0.8. In Figure 4.13(a), for each trial, we plot the
number of individual optimization steps performed to minimize the total-energy of Equation 4.2
for each successive value of r. Note how similar the curves are. The total number of optimization
steps required to locate the surface does not change much. If the radius decreases slowly, the
optimizer will use more radius values but will require fewer iterations at each. If the radius
decreases faster, the situation is reversed but the global outcome is similar.

Sensitivity to Initial Conditions Because our algorithm appears to be very effective at
avoiding local minima, the choice of initial condition has little bearing on success or failure. It
does however have an influence on the time required to achieve convergence.
To demonstrate this, we again randomly picked a set of correspondences and ran the opti-

mizer several times using nine different initial conditions, chosen to be increasingly far from the
reference mesh. The algorithm yielded the same result in all cases and Figure 4.13(b) depicts
the number of individual optimization steps performed for each successive value of r during
each run. Starting close to the solution saves iterations for large values of r but not for small
ones. Nevertheless, this behavior could obviously be exploited in a tracking context where a
good initial estimate is usually available.

4.2.6. Results

The method has been tested in conjunction with three different feature point recognizers: The
publicly available SIFT implementation [69], a reimplementation of shape context characteriza-
tion [7], and a classification-based method [63]. SIFT provide fewer but more accurate matches
than shape contexts. The classification-based approach produces correspondences comparable
to SIFT but does it faster. Because our technique is robust, the results are almost indistin-
guishable whatever the matching method used, as shown in Figure 4.5. However, because the
classification-based method is much faster than the others, it is only when using it that we obtain
true real-time performance. In this example, the algorithm runs at 10 frames per second on a 2.3
GHz laptop. Furthermore, because the point matcher is relatively insensitive to light changes
and motion blur, they do not hinder the registration process.
Since we work in each frame individually, we can find objects as soon as they become visible

and our method is robust to both perspective distortion and severe deformations. In the example
of Figure 4.4, the ICCV logo on the shirt is detected very quickly and well before its deformation
has become roughly planar. Similarly, the logo is equally well detected when worn by different
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people or seen on the ICCV mug. Figure 4.14 depicts similar speed and robustness to deforma-
tions when detecting a piece of foam. For well textured objects, we get no false positives and
only false negatives when the deformations or occlusions are so severe that the target object is
almost impossible to make out.
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4.2. 2–D Non-rigid Surface Detection

Figure 4.14.: Deforming a piece of foam. The model image (top left) was used to produce the
validation texture (top right) which is overlaid on the results of the right column.
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4.3. 3–D Non-rigid Surface Detection

We will show that the robust estimation scheme of previous section is not restricted to 2–D. It is
possible to replace the 2–D hexagonal mesh of Section 4.2.1 with a 3–D surface parameterization
and a camera projection model, resulting in a system that fully recovers 3–D deformations.
However, without a strong model, 3–D detection and shape recovery of a non-rigid surface from
monocular images is a severely underconstrained problem.
First, the three-dimensional problem has many more degrees of freedom. The six camera

pose parameters add to the ones accounting for 3–D shape. Second, different 3–D shape and
pose configuration can lead to very similar 2–D projections, making detection from a single
view ambiguous.
Extension to 3–D therefore requires a sound deformation model. It reduces the deformation

search space, ideally restraining it to the only physically possible shapes. Hereafter, we combine
Salzmann’s surface parameterization first published in [90] and our robust estimation scheme.
It yields an efficient algorithm that is still sometimes underconstrained if the number of wide-
baseline matches is too low, for example because some surface area lacks texture. We quickly
explain how to use frame-to-frame feature matching and silhouette detection to improve results.
Finally, we present evaluation and results at the end of the section.

4.3.1. Related Work

Detecting and tracking 3–D surface deformations in monocular video sequences requires de-
formable models to constrain the search space and make the problem tractable.
Such models have been created for feature point-based structure from motion [108, 107, 67,

120] by tracking feature points and using them to learn both shape and motion. While effective,
these algorithms assume that a fixed set of feature points can be reliably tracked and are not
designed to exploit other sources of image information or to use known surface properties to
recover the shape far away from those feature points. This typically requires explicit surface
modeling using as few degrees of freedom as possible.
One way to achieve this is to only consider the motion of a few control points. Free-form

deformations [98, 30, 77] are a good example of this kind of approach but there is currently
no automated way to create appropriate sets of deformation modes or control points. Physics-
based models are potentially more generic. The original ones [56] were 2–D and have been
shown to be effective for 2–D deformable surface registration [5]. They were soon adapted
for 3–D surface modeling purposes by using deformable superquadrics [106, 75], triangulated
surfaces [18], or thin-plate splines [74]. In this framework, modeling generic 3–D surfaces
often requires many degrees of freedom that are coupled by regularization terms. In practice,
this coupling implicitly reduces the number of degrees of freedom, which makes these models
robust to noise and is one of the reasons for their immense popularity. This reduction can also
be explicitly achieved via modal analysis [82, 18, 25]. The cartographic work of [38] represents
3–D surfaces as hexagonal meshes that deform to minimize an energy that was the sum of an
image-data term and a quadratic regularization term. This proves very effective for cartographic
modeling, which is essentially 2.5–D as opposed to fully 3–D. But, it turns out to be insufficient
for robust monocular video-based tracking of deformable surfaces.
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4.3. 3–D Non-rigid Surface Detection

Since accurately capturing the physics of deformable surfaces in a dynamical model is diffi-
cult, example-based approaches are an attractive alternative. They involve creating a database of
representative shapes and using them in conjunction with a dimensionality reduction technique
to learn a low-dimensional model. Active appearance models [19] pioneered this approach in
the 2–D case and have since been extended to 3–D [73]. Morphable models [14] rely on the
same philosophy to build 3–D face models: The database is made of 3–D meshes that were
fitted to laser scans and then registered to each other. Similar approaches were successfully used
to learn models of articulated motion [13, 101]. However, in all these cases, gathering and reg-
istering enough examples to build a meaningful database represented a very significant amount
of work. The difficulties involved in creating the databases have limited the spread of these
example-based approaches.

4.3.2. 3–D Surface Parameterization

Dimensionality reduction is key to make 3–D non-rigid registration tractable and greatly helps
towards canceling the ambiguities inherent in monocular 3–D recovery. The approach of [92]
creates low-dimensional models of deformable 3–D surfaces that can be represented as 3–D
meshes of genus zero. Given the possibly non-planar rest shape of the mesh, constraining its
edges to retain their original lengths implies that all possible deformations are entirely specified
by a small subset of the angles between its facets. This implies that the manifold of all possible
deformations can be effectively sampled by randomly setting a limited number of angles. This,
in turn, generates a database of deformed shapes with identical topologies. A standard dimen-
sionality reduction technique produces the low-dimensional 3–D deformation models that we
need for tracking and detection purposes.
The inextensible triangulations we consider can be thought of polyhedra made of metal plates

and whose edges have been replaced by hinges. Such polyhedra have been extensively used in
the classroom to teach elementary geometry but not in our field. Nevertheless, they can assume a
surprisingly large range of shapes and, therefore, produce representative shape databases. Thus
this approach can be used to recover the deforming 3–D shape of such diverse objects as a T-
shirt, a sheet of paper, a sail, or an elastic surface. Even though these have very different physical
properties, the model has the right degrees of freedom to capture their deformations, even when
they are not isometric [54], and to take full advantage of available image information.
The angle-based parameterization of [92] reduces the number of parameters required to spec-

ify the shape of an inextensible mesh. However, it is not particularly well adapted to fitting
surfaces to images. It is therefore only used as an intermediate representation that samples the
set of possible shapes by randomly drawing the angles from a uniform distribution between two
bounds. Since all the resulting deformed meshes have the same topology, we form a 3V vector
for each one by concatenating the coordinates of its V vertices in the vector v. By running
PCA on these vectors and retaining only the first Nc << 3V principal components, we can
approximate the vector of coordinates of any mesh as

s(α1, .., αNc) = s̄ +

Nc
∑

k=1

αksk , (4.17)
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(a) (b) (c)

Figure 4.15.: Hexagonal triangulations. (a) Rectangular mesh used to model the piece of paper.
(b) Triangular mesh used to model the spinnaker. (c) Stitching a rectangular patch
for the body part and two triangular ones for the sleeves lets us model the T-shirt.

where s̄ is the vector corresponding to an undeformed mesh, the sk are the principal components
or modes, and the αk are weights that specify the surface shape. In other words, the shape of a
mesh can now be expressed as a function of the vector θα = {α1, ..., αNc}.

Figure 4.16 depicts the influence of two of the most significant modes in the case of the meshes
of Figure 4.15. Giving weight to the first produces bending and, to the second, extension. The
presence of extension modes may seem surprising since all the samples we used to learn the
model are instances of the same inextensible mesh. However, given that the deformations are
not linear when expressed in terms of 3–D coordinates, there is no reason for the manifold of
all resulting shapes to lie on a hyperplane. Intuitively, by using PCA, we consider the Nc-
dimensional ellipsoid that includes this manifold without being limited to it. This produces not
only extension modes but also rigid modes that we discard.

In practice, the presence of these extension modes makes the method more general: On the
one hand, if the surface whose deformations we seek to recover is truly inextensible, we can
incorporate a term that prevents extension or shrinking into our optimization scheme. On the
other hand, the presence of the extension terms lets us effectively model stretchable materials
using a low-dimensional deformation model.

Any point p lying on the rest surface s̄ can be expressed with its barycentric coordinates
bi(p) and the three vertices si forming the facet Fp on which p lies. Given some deformation
parameter θα, the point p follows the surface to reach the point

fθα
(p) =

∑

i∈Fp

bi(p)si(θα) . (4.18)

Since s(θα) forms a linear combination (see Equation 4.17), s(0) = s̄ and f0(p) = p. The
function f , parameterized with θα, densely transforms all points p on the rest surface to some
location of the deformed surface. Next section shows how to integrate this parameterization into
an optimization scheme that recovers the shape from one or more views of the surface.
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(a) (b) (c)

Figure 4.16.: The deformation modes of the meshes of Figure 4.15, computed by PCA of gen-
erated examples [92]. In all figures the average mesh is the middle one. The other
two are obtained by taking a single αk to be non zero. Positive and negative values
of that αk yields the shown meshes. (a) Bending and extension modes of the flat
rectangular mesh, (b) the triangular spinnaker, and (c) the T-shirt.

4.3.3. Optimization Scheme

The shape of the mesh is controlled by the θα vector of weights assigned to the PCA modes. To
handle the potentially moving camera, or cameras, we introduce a vector of extrinsic parameters
κ for each one and define the state vector

θ3 = (κ1, . . . , κC , θα)T , (4.19)

where C is the number of cameras being used. Note that this formulation can handle both one
single camera and multiple cameras that may move with respect to each other. A camera i,
whose rotation and translation are parameterized by κi, can project a 3–D point p on the image
point q = κi(p). Therefore, the projection of the deformed point fθα

(p) on camera i is

T i
θ3

(p) = κi (fθα
(p)) = κi





∑

j∈Fp

bj(p)sj(θα)



 , (4.20)

which is a function mapping surface points to image points. It plays the same role as the Tθ

function of Equation 4.1 in the 2–D case. The expression of the correspondence energy term in
the 3–D case is then:

εC(θ3) = −
∑

c∈C

wcρ (‖c1 − Tθ3 (c0)‖ , r) ,

where ρ() and r are the robust estimator and the deterministically reduced radius of confidence,
both discussed in Section 4.2.
A deformation energy term is required to favor, within the linear space of deformations, the

ones that do not stretch or compress the surface. As we saw in previous section, a linear combi-
nation of principal components can result in a mesh that expands or shrinks. To model surfaces
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boo l ean d e t e c t _ s u r f a c e _ o n_ f r am e ( f )
{

wbm = compute_wide−b a s e l i n e _ma t c h e s ( f )
lfm = compu t e_ l a s t _ f rame_ma t ch e s ( f )
f o r ( r = 1 0 0 0 ; r > 1 ; r = 0 . 5 ∗ r )
{

sm = compu t e_ s i l h o u e t t e _ma t c h e s ( f )
m = app ly_ rho ( r , wbm + lfm + sm )
op t im ize_w i th_Levenbe rgMarqua rd t (m)

}
i f ( s i z e (m) > t h r e s h o l d )

r e t u r n s u c c e s s
e l s e

r e t u r n f a i l u r e
}

Algorithm 4.1: Overview of the 3–D complete detection algorithm.

that do not stretch, a deformation energy term favors, within the linear space of deformations,
the ones that preserve edge lengths:

εD(θ3) =
∑

(i,j)∈E

(‖si(θα) − sj(θα)‖ − Li,j)
2 , (4.21)

where E represents the set of all edges and Li,j is the initial edge length. As in the 2–D case, the
final energy term is defined by:

ε(θ) = λDεD(θ) + εC(θ) . (4.22)

The non-linear nature of the deformation energy term is incompatible with the semi-implicit
optimization algorithm we used in the 2–D case (Section 4.2.1). We therefore use the Levenberg-
Marquardt algorithm to optimize ε(θ) [71]. As we have seen in Section 4.2.3, mismatches elim-
ination and optimization are alternated, with a radius of confidence r reduced at each iteration.
Algorithm 4.1 summarizes the process.
The Levenberg-Marquardt optimization of εD is, compared to the 2–D case, more sensitive

to initialization issues, because the problem is more ambiguous. Fortunately, wide-baseline
matching eases convergence, even when starting with a very fuzzy initialization. We used several
approaches. One of them is to assume a standard initial pose. As soon as the surface gets
close enough to it, detection is successful and, since optimization starts from the previous frame
configuration, the user can bring the target object far from its initial pose. Another strategy is
to compute an initial guess using the P3P algorithm, assuming a rigid surface [39, 86]. If the
deformation is not too large, the result is close enough to let the optimization converge to the
global minimum. The last strategy, very recently developed by Salzmann et al, consist in a
closed form computation of the pose and shape [91].
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Figure 4.17.: Bidirectional feature matching. When matching two consecutive frames, matches
are established back and forth, and only agreeing matches are kept.

Figure 4.18.: Frame-to-frame correspondences, as detailed in Section 4.3.4. Only inliers kept
within the final radius of confidence are shown.

4.3.4. Temporal Consistency

Up to now, feature points are the only exploited image information. However, features are sparse.
Despite the shape parameterization of previous section, recovering the 3–D pose of a monocular
camera, together with the surface shape, is sometimes ambiguous: Several 3–D poses and shapes
could explain the observed image. In that case, if detection is made on a video sequence without
any temporal consistency, the system will hesitate between possible solutions. A very small
change in image can cause the optimization to jump to another solution. The resulting camera
pose estimation thus presents jitter. Therefore, enforcing temporal consistency is required. One
possibility is to measure motion flow.

On the one hand, wide-baseline correspondences are sparse but provide very strong clues and
are not subject to drift. On the other hand, frame-to-frame matching of features estimates motion
flow, is easier to compute, denser, and induces drift. Both techniques are complementary and
their combining, when detecting an object in a video sequence rather than in a single image,
leads to a stable and jitter free tracking. In ambiguous cases, introducing frame-to-frame corre-
spondences in the set of correspondences C forces the optimizer to stick to a particular solution,
rather than jumping from one to the other at each frame. Of course, there is no guarantee that
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the chosen solution is the correct one. Fortunately, tracking is stable in the sense that even if it
drifts slightly, the wide-baseline correspondences will eventually bring the tracking back to the
correct position.
Frame-to-frame correspondences are obtained by detecting features on two consecutive frames,

and by comparing features neighborhood. The matching process is very similar to the one de-
scribed in [122], except that epipolar geometry is meaningless in the presence of a non-rigid
surface. As illustrated by Figure 4.17, features are matched back and forth: Frame t− 1 is com-
pared to frame t, and then frame t with t − 1. Incompatible matches are eliminated. Fig 4.18
depicts typical correspondences obtained when matching two consecutive frames.
Once a correspondence is established, its location ct−1 on the last frame is backprojected on

the surface, to obtain the 3–D coordinate pt−1. Obviously, the projection of pt−1 on frame t
should lie near ct. This constraint can be enforced by the correspondence energy εC of Equa-
tion 4.8, by inserting all frame-to-frame correspondences into the set C of wide-baseline corre-
spondences. Our robust estimation scheme takes care of eliminating outliers.

4.3.5. Exploiting Silhouettes

When projecting a 3–D surface on a planar image, the boundary between the background and the
surface forms a silhouette on the image. Back projecting the silhouette on the 3–D surface yield
a curve separating visible and hidden areas. The silhouette of the real object often correspond to
a change in appearance on the image. Therefore, aligning the projection of the 3–D occluding
contour with image transitions can improve 3–D shape recovery. In our framework, this process
fits well the optimization, by summing an additional energy term in the objective function.
The approach works as follow. The first step consists in determining the 3–D occluding

contour, based on the current 3–D shape and camera pose. This could be achieved accurately
with implicit meshes [52], or more naively by simply computing the boundary between visible
and hidden facets.
The 3–D occluding contour is then projected on the image, yielding a 2D curve which is

regularly sampled. Texture changes are then searched from each sample, perpendicularly to the
curve. One way of performing this search, proposed in [99], use a statistical model of texture
features. A simpler and faster approach just searches for intensity transitions. Figure 4.19(c)
shows an example of such silhouette scans.
An energy term εS is taken to be the sum of square Euclidean distances between the edge

projections and their corresponding image transition. The robust estimator ρ of Equation 4.9
eliminates outliers. As explained in [112], keeping multiple hypotheses can also improve results.
For speed considerations, the edge matching is not done each time the minimizer updates the

state vector. Instead, it is done each time the radius of confidence r is decreased.

4.3.6. Results

We tested our deformation measurement method in two contexts: Video sequences and still pic-
tures. On the one hand, the goal of working with a video sequence is to analyze the behavior of a
surface in time, while it is deforming. On the other hand, working with just a few pictures allows
to have a snapshot of a surface shape at the time the picture was taken. From a computation point
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(a) (b) (c)

Figure 4.19.: Image data. (a) An image from an input sequence. (b) One of 15 images used
to build a textured 3–D model of the spinnaker. For our experiments, we added
black scotch tape on the otherwise white parts of the sail to help our wide-baseline
algorithm to find correspondences between model and input images such as those
depicted by the black lines. (c) Contours detected as texture boundaries. Even
though the boundary is not correct everywhere, thanks to the model and robust
estimation we still recover the correct shape.

of view, both problem are very similar, except that frame-to-frame matches are unavailable in
still images. From an application point of view, there is a trade-off between spacial and temporal
resolution. We also tested the suitability of our technique to augmented reality by implementing
a toy application in which the user deforms a paper augmented with virtual poles producing
electric arcs. This application is presented in Chapter 7.

Deformation Recovery from Video Sequences Here we demonstrate the capabilities
of our system using the four very different kinds of objects depicted by Figures 4.20, 4.21 and
4.22. They cover a wide range of physical properties and the images have been acquired using
ordinary camcorders. In all four cases, we first created a 3–D textured model offline using one
or more static images acquired independently of the videos.

We then optimized the criterion of Equation 4.22 using model-to-image correspondences,
correspondences with the previous image, and optionally silhouette information. As shown in
the figures of this section, the resulting shapes are accurate enough for correct reprojection.

We represent both the sheet of paper and the elastic surface, which was cut out of an inflatable
balloon, of Figure 4.21 and 4.22 as a 30 × 20 rectangular grid. We model the spinnaker using a
153-vertex triangle. The T-shirt mesh is made of 2 sleeves that are 45-vertex equilateral triangle
attached to a 9× 25 rectangular grid. We used 45 PCA modes to track the sheet of paper, 10 for
the balloon, 40 for the spinnaker and 50 for the T-Shirt.
The rest shape of the spinnaker is not planar and Voiles Phi, a Swiss sailmaking company,

gave us the CAD model that was used to design it, thus allowing us to fit a triangular mesh to
it. This gave us the initial shape from which we computed the deformation modes. To create
the textured model needed for automated run-time operation, we developed a software tool that
allows us to manually supply a few image-to-model correspondences in images such as those of
Figure 4.23, which do not belong to the test video. By feeding these correspondences along with
automatically detected silhouettes into the optimization framework of Section 4.3.3, we recover
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(a) (b) (c) (d) (e)

Figure 4.20.: Tracking a spinnaker with either one or two cameras. (a,b) Two synchronized im-
ages from independently moving cameras, with recovered spinnaker reprojection.
(c) Tracking using only one camera. Note that once reprojected on the images,
the results are almost indistinguishable. (d) 3–D results with two cameras. Both
camera positions are also retrieved. (e) Superposed 3–D shapes retrieved using ei-
ther one (red) or two (blue) cameras. Note that both shapes are very similar, which
indicates that the deformation model provides a good approximation when data are
missing.

Figure 4.21.: Tracking a deforming sheet of paper and T-shirt. In both cases, we show the de-
formed 3–D mesh overlaid on the original images in the top row and then seen
from a different viewpoint in the bottom row.
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the spinnaker’s shape into the images and, thus, a textured model. In the specific case depicted
by Figure 4.23, we only supplied 10 correspondences per image, which did not take long to do.
In short, our deformation modes not only lead to robust and automated run-time operation but
can also be used to limit the required amount of manual intervention during model building.
These experiments display several strengths of our method. First, as shown in the videos

corresponding to the deforming sheet of paper of Figure 4.21 and spinnaker of Figure 4.20, our
system is robust enough to process sequences of more than 1500 frames acquired both indoors
and outdoors without getting lost or drifting. When the image data is too weak, 3–D shape
recovery becomes temporarily less accurate but the system soon recovers.

Deformation Recovery from Still pictures Our system also works with still pictures,
such as the one of Figure 4.24. We developed a graphical user interface to quickly click corre-
spondences between a 3–D CAD model and pictures, allowing quick deformation measure and
shape comparison, as illustrated by Figure 4.25.
Detection precision increases with the number of simultaneous views used. To estimate our

system’s accuracy, we used a finite element simulation to generate a possible sail shape. We
then generated a set of synthetic pictures on which we applied our method. To compare shapes,
we first reduce them to a restricted set of parameters: Draft and camber at curves 25% and 50%
of the spinnaker’s height, as depicted by Figure 4.26. Sailmakers are used to deal with this
kind of measures. We can then compare draft and camber measurement with our ground truth
and use it as an estimation of the system’s accuracy. The comparison is visible on Figure 4.27.
Unsurprisingly, the accuracy improves when using multiple views. Results obtain from a single
image are noisy but still meaningful.

4.4. Conclusion

This chapter presented a method making fast and robust non-rigid surface detection possible.
Based on wide-baseline feature matching, our robust estimation scheme is able to simultane-
ously eliminate outliers and to compute deformation parameters. Since our approach requires
a geometric model, we combined it with a 2–D regular hexagonal mesh. It allowed us to con-
veniently model non-rigid surfaces and required little computation costs. However, since its
vertices lie in the image plane, no depth or orientation is computed, making impossible augmen-
tation with 3–D objects. Therefore, we also tested a 3–D geometric model that both handles
camera pose and a linear deformation basis. It allowed 3–D augmented reality on deforming
surfaces. However, AR does not reduce to geometric registration and the next chapter proposes
solutions to improve virtual object rendering by appropriately handling illumination.
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4. Geometric Registration

Figure 4.22.: Tracking an extensible surface undergoing anisotropic deformations. In the top
row, we show the original images and, in the bottom row, we overlay the recovered
3–D grid that stretches appropriately.

Figure 4.23.: 3–D model of the spinnaker overlaid on the three images used to compute its refer-
ence texture. In each image, we specified 10 correspondences with a CAD model
of the spinnaker and used them, along with automatically detected silhouettes, to
deform it. The texture is then exploited to measure the shape in the remaining of
the video sequence.
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4.4. Conclusion

Figure 4.24.: Measuring the shape of a spinnaker. The black lines show the deformed and repro-
jected design shape.
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4. Geometric Registration

Figure 4.25.: Comparing three shapes of the same spinnaker. The design shape is on the left.
Our system computed the shape of the two others, one of which is visible on Fig-
ure 4.24. They are manufactured with different materials.
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Figure 4.26.: To evaluate the shape of a spinnaker with only a few measures, sailmakers define
curves at different height, such as the ones depicted at 25%, 50% and 75%. From
these curves, camber is defined as a

b+c and draft as
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Figure 4.27.: Average absolute error of draft and camber measured from a varying number of
synthetic images. As expected, the error decreases quickly when using multiple
views. Monocular measurement, although noisy, is still meaningful.
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5. Handling Illumination

Convincingly adding virtual objects into a scene not only requires proper geometric registration,
which is what the techniques of Chapter 4 provide, but also photometric modeling so that they
can be relighted correctly and properly blend into the environment. We propose to differentiate
two cases: Retexturing, which augments a surface by altering its appearance while preserving its
geometry, and 3–D augmented reality for which virtual geometry is added. Both cases require
different approaches. In the retexturing case, since the geometry of the scene is preserved, the
lighting information required to augment a particular surface point is present on the observed
image. Therefore, the process first evaluate the changes in pixel intensity between the reference
image and the input image and reproduce them on the virtual texture. The information about
where the light is coming from is not necessary, as opposed to the case of added geometry.
When rendering a virtual facet without a real counterpart, the system needs a representation of
the real illumination environment for realistic shading. It also requires knowledge of the target
object 3–D pose and orientation, as well as geometric calibration: The intrinsic and extrinsic
parameters of the camera.
Most existing techniques perform geometric and photometric calibration as independent steps,

which is incompatible with our framework of Section 2.4. By contrast, our approach relies on
the very same set of images to perform both kinds of calibration, the geometric part of which
is relatively standard and detailed in Appendix B. For each camera, as long as the lighting and
camera settings do not change, the pixel intensities within the calibration pattern depend only
on its normal. In other words, each image in which the pattern is detected provides a number
of samples corresponding to one individual surface orientation. Because we can easily and
automatically collect many such samples, we can simultaneously recover the gain and bias of
each camera and create an environmental lighting model that can be used for relighting purposes.
In the rest of the chapter, we review the related work, present the retexturing case and finally

the photometric calibration required for adding virtual geometry.

5.1. Related Work

A pioneering approach to realistic shading for AR relies on geographic location and date to
compute the sun position [78] and to insert virtual buildings in a picture of a real landscape.
Real-world illumination can be captured using calibration objects such as reflective spheres.
This can be done as a preprocessing step [23] if the illumination remains unchanged. It can
also be done in real-time [55] using a calibration object built by adding a mirror ball to a 2–
D square marker. While effective, this approach is much more difficult to deploy than ours
since constructing such an object is much more involved than simply using a textured pattern.
Similarly, [93] relies on omni-directional stereo cameras, which requires specialized hardware

73



5. Handling Illumination

instead of the ordinary cameras we use. The photometric calibration we get may not be as
accurate as those obtained with such lighting probes but we will show that it is amply sufficient
to synthesize realistic augmented images while being much more light-weight.
Another class of approaches [27, 41] focuses on interactive rendering of illumination changes

caused by virtual objects in the real scene. However, this typically involves a 3–D scene model,
which is cumbersome to acquire.
Our approach to creating an environmental lighting map is related to the inverse lighting

framework of [72] that involves an object of constant albedo and known shape. If the object
surface contains a sufficiently large number of differently oriented normals, it is possible to
relate a lighting contribution to each direction of a discretized lighting sphere. Regularized
deconvolution then allows us to estimate the light sources position. In our case, as the grid
moves in front of the cameras, it samples the spaces of normals. Since we precisely compute
those normals, we can directly exploit the observed changes in pixel intensities to model the
illumination using a very similar approach. However, we require a textured surface rather than
a constant albedo.

5.2. Illumination Model

In practice, if we wish to build a versatile system that can be demonstrated in uncontrolled
environments, we cannot make strong assumptions about light sources that are present when
acquiring the input video. There can be many and their respective intensities and spectral prop-
erties are unknown, which can result in complex shading, shadowing, and color effects. To avoid
the latter, we work independently on the red, green, and blue bands of color images.
We consider a potentially infinite number of sources that we assume to be both directional

and outside the capture volume. For our purposes, this provides a satisfactory approximation of
extended light sources.
The irradiance e at surface point p and time t can therefore be written as

ep,t =
L

∑

l=0

ol,p,t max (np,tdl, 0) Ωl , (5.1)

where Ωl represents the radiosity, or power, of source l, dl its direction, and ol,p,t a binary
variable that takes the value 1 if and only if light source l is visible from point p at time t. We
assume a Lambertian surface and a linear response for the cameras and write the pixel intensity
I(c,p, t) of point p in the image acquired by camera c at time t as

I(c,p, t) = gcapep,t + bc , (5.2)

where ap is the surface albedo at point p, gc the camera gain, and bc its bias.
We propose two ways of exploiting this illumination model for augmented reality. Wewill first

show how to create an augmented image by modifying the surface albedo ap, while preserving
the surface normal and position. We then explain how to compute relative gains and biases of
several cameras and how to compute the irradiance et as a function of the surface normal. It
results in a light map that can shade virtual objects.
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Equation 5.2 assumes that all pixels have the same gain and bias, which is wrong in case
of vignetting: Poor lenses tend to make image corners darker than its center. This issue is
not a problem in the retexturing case, since the irradiance can be evaluated for each pixel and
can therefore account for vignetting. However, when inserting new geometry in the scene, the
evaluation of the irradiance is done over many frames and anywhere on the input images. A
strong vignetting might cause some artifacts. In practice, none of our experiments suffered from
this issue.

5.3. Realistic Retexturing

In Chapter 4, we have shown that we could compute fast and accurately the 2–D deformation
of a surface. In an Augmented Reality application such as the one depicted by Figure 5.1, this
is what is needed to modify in real-time the appearance of that surface. However, to achieve a
convincing illusion, it is important not only to model geometric deformations but also lighting
changes. To this end, we have developed a dynamic approach to estimating the amount of light
that reaches individual image pixels by comparing their colors to those of the model image. This
lets us either erase patterns from the original images and replace them by blank but correctly
shaded areas, which we think of as Diminished Reality, or to replace them by virtual ones that
convincingly blend-in because they are properly lighted.

The Lambertian Case The augmented surface is assumed Lambertian. It is easy to control
the acquisition of its reference image. With no loss of generality, we can therefore assume that it
has been acquired when the surface was both undeformed and lighted uniformly, which means
that every surface point receives the same amount of light in the color band we are working with.
Under this assumption, letmp and up be the pixel intensities showing the same surface point

p in the reference and input image respectively, and let ap be the corresponding surface albedo.
By assuming a camera gain gc = 1 and bias bc = 0, we obtain from Equation 5.2:

mp = erap , (5.3)

up = ei,pap , (5.4)

where ei,p is the total irradiance reaching surface point p, and er the total irradiance in the
reference image assumed to be the same at all surface points. In general, the values ofmp and
up are different due to changes in both normal orientations and lighting conditions. However, the
geometric registration we have established between the two images tells us that they correspond
to the same physical point, which we exploit as follows.
Let us consider a white surface area with albedo aw at location w on the surface. If the target

surface has no white part, it is always possible to put a white object next to it while taking the
reference image. We can measure on the reference image the pixel intensity mw where this
white location w is projected and write

mw = eraw , (5.5)
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(a) (b) (c)

(d) (e) (f)

Figure 5.1.: (a) The reference image of the target surface with the model mesh overlaid. (b) An
input image. (c) The mesh is correctly deformed and registered to the input image.
(d) The original pattern has been erased and replaced by a blank but correctly shaded
image. (e) A virtual pattern replaces the original one. It is correctly deformed but
not yet relighted. (f) The virtual pattern is deformed and relighted.
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5.4. Radiance Map for 3–D Augmentation

where er is the irradiance of Equation 5.3. Using this white normalizationmw, we can compute
a new image, looking similar to the input one, except that the surface albedo is changed to aw.
In the input image, if there were no texture, the corresponding image intensity should be

sp = ei,paw = awer
up

mp
= mw

up

mp
. (5.6)

Note that sp is expressed exclusively in terms of image intensities, which are readily available,
as opposed to albedoes or surface normals that are not.
Replacing the intensities up of all the pixels on the object surface by sp yields images such

as the one of Figure 5.1(d) where the original texture has been replaced by a blank but correctly
shaded surface. To draw a shaded new texture, as in Figure 5.1(f), we simply multiply texture
values with their corresponding white sp.
Note that, because we perform the computation locally, it remains valid no matter how many

sources there are and what their specific characteristics may be. The only thing that has to be
true is that the contribution of the individual light sources to the pixel intensity are all modulated
by the same diffuse albedo and do not depend on the viewpoint.
In practice, we compute the lighting factor only at mesh vertices, averaging pixels values of

both model and input images over an hexagonal area surrounding it. The resulting sp values are
then interpolated over triangles by the GPU through a few OpenGL calls.
In some cases, sp is difficult to estimate reliably on large single-colored areas. In the example

of Figure 5.2(a), recovering the sp blue component over the red area is hard because sensor
inaccuracy on remaining blue light is amplified by a big factor. However, the visual impression
given by Figure 5.2(b) is still that the original painting has been erased and replaced.

Specularities and Saturation The assumptions used to derive Equation 5.6 are clearly
violated for specular materials. However, as illustrated by Figure 5.3, this does not have severe
consequences even in the presence of strong specularities and the illusion remains convincing.
This is because, when there is a specularity, the image intensity increases and the up

mp
ratio

of Equation 5.6 becomes large. As a result, the sp intensity that is used to draw the synthetic
patterns also increases, which is perceptually correct since it yields intensity maxima at specu-
larities’ locations. In other words, the absolute value of sp may not be correct but its magnitude
relative to its neighbors remains consistent with the presence of a specularity. And since the
human eye is much more sensitive to relative values than to absolute ones, this suffices.
In practice, specular peaks often saturate the camera sensor, thus making the estimation of up

unreliable. We detect such cases by simple thresholding and we handle saturation by setting sp to
its maximal possible value. Since color computation is applied independently on the red, green
and blue channels, one channel can saturate while the other do not. As a result, not only specular
peaks but also saturated areas in the input image are correctly transcribed into the synthetic ones.

5.4. Radiance Map for 3–D Augmentation

In this section, we extend retexturing to make possible the realistic shading of virtual geometry.
To do so, we need the 3–D detection of a flat pattern and the calibration of one or more cameras,
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(a) (b)

Figure 5.2.: (a) original image. (b) The ISMAR logo replaces the shirt print. Recovering white
is hard in this image since the model has large single-colored areas, making light
evaluation difficult.
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5.4. Radiance Map for 3–D Augmentation

Figure 5.3.: Handling specularities. (a) Input image with strong specularities. The main one is
produced by a lamp, while the two smaller ones can be attributed to light coming
through window. To produce this result, the paper has been covered by a transparent
plastic sheet. (b) The picture has been erased from the surface but the specularities
still appear to be at the right places. (c) The ISMAR logo has been inserted.

both detailed in Appendix B. We present two complementary approaches to 3–D shading. The
first one involves solving a linear system of equations derived from the calibration sequence to
express the illumination as a function of surface normals. Once the gains and biases have been
estimated, this model can be incrementally updated to reflect lighting changes. The algorithm
can therefore be embedded into a real-time application that handles non-constant lighting. How-
ever, it is not designed to synthesize either shadows or specular reflections. We use therefore a
second approach based on deconvolution. It explicitly computes a light distribution that could
have produced the observed pixel intensities. It is more computationally intensive and makes
no provisions for time-varying lighting but allows added virtual objects to cast shadows and
produce realistic specularities.

Assumptions Recall the illumination model presented in Section 5.2. It considers a poten-
tially infinite number of sources that we assume to be both directional and outside the capture
volume. Moreover, by printing the calibration pattern on matte paper, we ensure that it reflects
light equally in all directions. As a result, the difference in intensity values between images
taken at the same time by two different cameras are due to shutter speed or aperture, but not
to camera pose. If we further assume that the same sources are visible from every point of the
calibrated volume, the amount of light reflected by a point on the calibration pattern depends
only on the surface normal nt at time t. In order to simplify reasoning, we assume here a flat
augmented pattern. Therefore, the observed normal nt is constant over the surface and depends
only on time, as the whole plane rotates.
To be robust to small localization errors, we do not consider individual points, but small

patches π that average the local property around points on the calibration pattern. Applying
these assumptions to Equation 5.1, the irradiance e at surface patch π and time t can therefore
be simplified to:

eπ,t =

L
∑

l=0

max (ntdl, 0) Ωl , (5.7)

where Ωl represents the radiosity, or power, of source l and dl its direction. Recall that the pixel
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(a) (b)

Figure 5.4.: Illumination models. (a) An interpolated light map computed using the on-line tech-
nique of Section 5.4.1. (b) A dome of light sources whose individual powers are
estimated using the technique of Section 5.4.2. In this picture, the intensity of a
triangle represents the power of an individual light source.

intensity I(c, π, t) of patch π in the image acquired by camera c at time t is

I(c, π, t) = gcaπet + bc , (5.8)

where aπ is the average surface albedo over π, gc the camera gain, and bc its bias.
Our goal is to compute the gain and bias of all cameras, together with a collection of irradi-

ances et for all observed surface poses. In practice these quantities can only be known up to a
scale factor. We use for aπ the mean intensity over π in an image acquired under uniform diffuse
lighting such as the ones of Figure B.2.

5.4.1. On-line Lighting Calibration

Instead of explicitly evaluating the Ω radiances of Equation 5.7, we directly compute the eπ,t

irradiances as a function of the orientation of the n normals. More specifically, we simultane-
ously compute the gains, biases, and eπ,t irradiance values for the normals we have observed.
We then interpolate this set to estimate the unobserved values.
This yields a light mapM(n) such as the one depicted by Figure 5.4(a). When synthesizing an

augmented image s with a virtual surface whose normal is nv, the augmented pixel value is set
to sv = gcavMt(nv)+ bc, where av is the albedo of the virtual surface at point v. This lightmap
rendering is easily done by the GPU and requires only a short OpenGL Shading Language
(GLSL) program.

5.4.1.1. Linear Estimation of the Light Map

The geometric calibration process provides many surface normals nt and pixel values I(c, π, t).
To solve for the unknown gains, biases, and radiances, we linearize the problem by replacing
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Figure 5.5.: The irradiance factors et obtained by solving the linear system of Equation 5.9.
Interpolating these values yield a light map similar to the one of Figure 5.4(a).

some variables in Equation 5.8. Let

g′c =
1

gc
,

b′c =
bc

gc
.

For each patch in each detected frame, Equation 5.8 can be rewritten as

−I(c, π, t)g′c + aπet + b′c = [−I(c, π, t) 1 aπ]





g′c
b′c
et



 = 0 . (5.9)

Putting all these equations together yields a large but sparse linear system and we find our so-
lution as the eigenvector associated to the smallest eigenvalue. In case of color images, one
system is solved for each color band. The scale of the result is arbitrary, and we choose to set the
gain of the first camera to 1. Typically 50 to 300 irradiances solved simultaneously is enough
to provide gain and bias relating the multiple cameras. Figure 5.5 depicts the solution of such a
system. Figures 5.7 and 5.8 show the same teapot rendered with different camera biases. When
comparing the intensity on the table, the difference in camera aperture is clearly visible and well
reproduced on the virtual teapot.
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Figure 5.6.: Rendering a virtual teapot under real and dynamic lighting. The top row shows
the updated light map. On the left image, a lamp lights up the card and the virtual
teapot. The lamp is then switched off, and the lightmap progressively reflects the
new illumination conditions.

5.4.1.2. Incrementally Updating the Light Map

The above computation assumes that the lighting does not change during calibration. However,
once the gains and biases are known, computing a new irradiance et+1 from a new observed
pixel uπ,t+1 is trivial. Thus, if the illumination changes, new frames can update the light map
at the same time it shades a virtual scene. Each frame can sample only one normal at a time.
Thus, if the light changes suddenly, it is not possible to update the whole irradiance map at once.
Instead, we locally update the irradiance around the measured normal and keep the old values
for other normals.
LetMt(n) be the light map at time t. To update its value for a surface of normal n with the

recently computed sample et+1 corresponding to the observed real surface orientation nt+1, we
write

∀n : Mt+1(n) = (1 − f(n)) Mt(n) + f(n)et+1 ,

where

f(n) =

{

exp
(

− cos−1 (n · nt+1)
1

2σ2

)

if cos (n · nt+1) > 0
0 otherwise

and σ2 a constant blurring factor. In practice, our system initializes the light map using the
solution of the linear system of equations and then updates it for each new frame. Figure 5.6
illustrates such a dynamic light map.

5.4.2. Offline Estimation of Light Distribution for Rendering Specular
Effects and Casting Shadows

While the previous method yields satisfying results for fast on-line pre-visualization, its accu-
racy suffers from two numerical problems. First, it does not minimize a physical error since
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the problem is intrinsically non-linear. Second, it solves simultaneously for camera-related pa-
rameters, the gains and the biases, and lighting-related parameters, the irradiances. As is the
case for geometric camera calibration, performing non-linear optimization and dissociating the
estimation of the internal parameters, here the gains and biases, from that of the external ones,
here the irradiances, yields more reliable results.
In [83], Lagger et al. presented an offline approach to doing so. It is computationally more

expensive than the on-line technique of Section 5.4.1 but produces a more sophisticated illumi-
nation model that allows for specular highlights, cast shadows, and changing the materials of
the virtual objects. The lighting environment is modeled as a regularly sampled dome of lights
of varying power. The process begins by estimating the gain and bias of each camera in a way
that is independent from lighting effects and normalizing the pixel intensities. It then applies
a regularized deconvolution algorithm on the observed pixel intensities within the calibration
object to assign to each individual light the power that best explains the observations. It yields
a lighting sphere with smooth but well-defined clusters, such as the one of Figure 5.4(b). The
knowledge of the source positions allows for realistically shaded virtual objects. Realistic cast
shadows and specularities can be computed using a Phong shading model. As shown in the
next section, the conjunction of tracking and lighting distribution estimation allows us to render
convincing augmented images.

5.4.3. Results

We used a three camera set-up to produce the augmented images of Figure 5.7. In the first
row, we use only the geometric calibration parameters to draw the virtual teapot at the right
place and use a randomly selected point light source to relight it. Even though the teapot is
correctly registered, the result is unconvincing because the shading patterns do not match those
of the other real objects present in the scene. In the middle row, we use the output of the on-
line photometric calibration procedure of Section 5.4.1 to relight the object. The result is much
improved but highlights and shadows are still missing. As shown in the bottom row of the figure,
using the output of the more sophisticated offline calibration procedure of Section 5.4.2 solves
both problems. Both highlights and shadows now appear at the right places, thus significantly
increasing the realism.
Figure 5.8 showcases the flexibility that our multi-camera system provides. In two of the

three images, the calibration pattern is not visible in the view we are trying to augment and
a monocular approach that relies on detecting it would fail. However, because it is seen by
another camera and because the relative positions of the camera with respect to each other have
been computed, we can nevertheless draw it at the right location, as evidenced by the fact that
the real box occludes it correctly.
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Figure 5.7.: Adding a virtual teapot. First row: We use only the geometric calibration data
and relight the teapot using a random point light source. The shading patterns do
not match those of the real objects. Second row: We use the on-line model of
Section 5.4.1 to relight the teapot. The result is better but the highlights and shadows
are still missing. Third row: Using the more sophisticated offline technique of
Section 5.4.2 produces realistic highlights and shadows.

Figure 5.8.: Even when the calibration pattern is invisible in the view we are augmenting, the
real object is accurately registered and correctly occludes the virtual teapot. This is
possible because the calibration pattern is seen by another camera whose position
and orientation are known.
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Figure 5.9.: Calibration and augmentation of a piece of cardboard. Note that the virtual vase
casts shadows on the real object in all frames and that a specularity moves realisti-
cally on its surface. In the bottom right image, we used a texture map to change the
albedo of the vase.
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6. Handling Occlusions

In augmented reality, a real object, such as a hand, could occlude, be occluded by, or intersect
a virtual augmentation. Dealing with all the three cases requires estimating the depth at which
the occluder is seen. Several approaches have been proposed to address this issue, few of them
meeting the constraints of our framework that forbids dedicated depth sensors. Recovering
depth from monocular views is not a simple task. We will not address it here. We rather address
a simpler problem: The case where a real object occludes a virtual one without intersecting it.
As we will see in this chapter, this restriction allows us to segment occlusion from a monocular
view, yielding correct retexturing. In uncommon pathological cases of 3–D augmentation, it
may introduce some artifacts. Overall, it is a perfectly acceptable price to pay to reach our weak
hardware requirement goal.

Our framework gives us a basis to address the occlusion issue, because it assumes that the
geometry and appearance of the object to augment is known. Chapter 4 and appendix B.8 cover
registration techniques with an observed picture. It is then possible to render a synthetic image
of the expected object appearance, in the exact pose showed by the input image. Of course, the
synthetic and actual images differ. The main causes are illumination changes and occlusions.

At that point, our initial depth estimation problem can be reduced to a segmentation problem.
Segmenting the areas where the differences are due to occlusion delimits the pixels that must
display reality rather than virtual objects. The task is simplified, but still far from trivial, because
occluding objects often cast shadows on unoccluded areas, changing their appearance. The
ambiguity between illumination effects and occlusions easily confuses naive algorithms.

The difficulty can be seen as a chicken-and-egg problem. To compute illumination, it is im-
portant to exclude occluded pixels. Otherwise, the illumination map gets corrupted. However,
knowing the illumination is very useful to determine the visibility of pixels, because direct com-
parison of intensities become possible. We propose to address the issue with an Expectation-
Maximization (E-M) algorithm that estimates the segmentation in turns with illumination and
occluding object colors. It also relies on normalized cross-correlation to accelerate the algorithm
convergence and to increase its robustness by preventing it from getting stuck in local maxima.

Occlusion detection by segmentation is closely related to background subtraction, a popular
video surveillance technique that segments foreground objects from images taken by a static
camera. We can therefore inspire from the abundant literature covering background subtraction.
It also turns out that our method, applied to background subtraction, performs very well in the
presence of sudden and drastic illumination changes.
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6.1. Related Work

Registering existing 3–D models of occluding objects is one option explored in [16]. Accu-
rate mutual occlusion between natural and artificial objects can be achieved using dense depth
computation from a stereo image pair [96, 118]. A combination of semi-interactive outlining of
occluding objects and structure from motion allows occluded AR and diminished reality [60].

The problem of occlusion in augmented reality can be considered as a background subtraction
problem. By back-warping the image to augment into a reference frame, one can locate visible
areas of the model to augment. This is an approach described in [42]. It presents an AR system
that includes interactive pointing. A pointer, such as a finger, occludes the augmented marked
plane. A stereo pair computes a depth map, and a background subtraction technique segments
the finger from the plane. The authors mention that shadows will be represented in the differ-
ence mask but are not part of the pointer itself. They improve segmentation by merging depth
information from the stereo pair. In contrast, we address a very similar segmentation problem
without requiring a stereo pair. Their work proves the usefulness of our tools for augmented
reality applications.

Many background subtraction techniques faced problems with illumination changes and shad-
ows. A popular solution consists in updating on-line a statistical background model. A pixel
from a new image is then classified as background if it fits the model. Wren et al. [119] rep-
resent the color of each pixel by a three-dimensional Gaussian, learned from color observation
of consecutive frames. Since a single Gaussian is a poor approximation of the true probability
density function, GMMs were proposed instead [37, 103]. These approaches have proved to be
effective at handling gradual illumination changes and repetitive dynamic backgrounds. Many
improvements have been published since, such as a recent method that dynamically selects the
appropriate number of components for each pixel [124].

Introducing a GMM is not the only way to model a dynamic background. Elgammal et al.
proposed to model both background and foreground pixel intensities by a nonparametric kernel
density estimation [29]. In [100], Sheikh and Shah proposed to model the full background with
a single distribution, instead of one distribution per pixel, and to include location into the model.

Shadows cast by moving objects cause illumination changes that follow them, thereby hin-
dering the integration of shadowed pixels into the background model. This problem can be
alleviated by explicitly detecting the shadows [85]. Most of them consider them as binary [85],
with the notable exception of [102] that also considers penumbra by using the ratio between two
images of a planar background. Our approach also relies on image ratios, but treats shadows as
a particular illumination effect, a wider class that also include the possibility of switching lights
on.

Another way to handle illumination changes is by using illumination invariant features, such
as edges. Edge information alone is not sufficient, because some part of the background might
be uniform. Thus, Jabri et al. presented an approach to detect people fusing color and edge
information [53]. More recently, Heikkilä and Pietikäinen modeled the background using his-
tograms of local binary patterns [49]. The bilayer segmentation of live video presented in [22]
fuses color and motion clues in a probabilistic framework. In particular, they observe in a la-
beled training set the relation between the image features and their target segmentation. This
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solution is not acceptable in our case, since shadows are mostly produced by occluding objects
themselves, making difficult an offline learning of illumination changes.

6.2. Method

Our method can serve in two different contexts. For augmented reality applications, where an
object is moving in the camera field and occlusions have to be segmented for realistic augmen-
tation. For background subtraction, where both the scene and the camera are static.
Let us assume that we are given an unoccluded model image of an object or a background

scene. Our goal is to segment the pixels of an input image in two parts, those that belong to the
same object in both images and those that are occluded. If we are dealing with a moving object,
we first need to register the input image, as covered in Chapter 4, and create an image that can
be compared to the model image pixel wise. If we are dealing with a static scene and camera,
that is, if we are performing standard background subtraction, registration is not necessary. It is
the only difference between both contexts, and the rest of the method is common. In both cases,
the intensity and color of individual pixels are affected mostly by illumination changes and the
presence of occluding objects.
Changes due to illumination effects are highly correlated across large portions of the image

and can therefore be represented by a low dimensional model that accounts for variations across
the whole image. In this work, we achieve this by representing the ratio of intensities between the
stored background image and an input image in all three channels as a Gaussian Mixture Model
(GMM) that has very few components—2 in all the experiments shown in this chapter. This
is in stark contrast with more traditional background subtraction methods [119, 37, 103, 124]
that introduce a model for each pixel and do not explicitly account for the fact that inter-pixel
variations are correlated.
Following standard practice [89], we model the pixel colors of occluding objects, such as a

hand holding the augmented object, as a mixture of Gaussian and uniform distributions.
To fuse these clues, we model the whole image—background, foreground and shadows—with

a single mixture of distributions. In our model, each pixel is drawn from one of five distributions:
Two Gaussian kernels account for illumination effects, and two more Gaussians, completed by
a uniform distribution, represent the foreground. A hidden variable assigns pixels to one of the
five distributions (E-step) and then optimizes the distributions parameters (M-step).
Since illumination changes preserve texture whereas occluding objects radically change it, the

correlation between image patches in the model and input images provides a hint as to whether
pixels are occluded or not in the latter, especially where there is enough texture.
In order to lower the computational burden, we assume pixel independence. Since this abu-

sive assumption entails the loss of the relation between a pixel and its neighbors, it makes it
impossible to model texture. However, to circumvent this issue, we characterize each pixel of
the input image by a five dimensional feature vector: The usual red, green, and blue values plus
the normalized cross-correlation and texturedness values. Feature vectors are then assumed in-
dependent, allowing an efficient maximization of a global image likelihood, by optimizing the
parameters of our mixture. In the remainder of this section, we introduce in more details the
different components of our model.
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6. Handling Occlusions

6.2.1. Illumination Likelihood Model

First, we consider the visible model, which is responsible for all pixels that have a counterpart
in the model imagem. If a pixel ui of the input image u shows the occlusion free target object,
the luminance measured by the camera depends on the light reaching the surface (the irradiance
ei) and on its albedo. Irradiance ei is function of visible light sources and of the surface normal.
Under the Lambertian assumption, we have seen in Section 5.2 (Equation 5.3) that the pixel
value ui is: ui = eiai, where ai is the albedo of the target object at the location pointed by
ui. Similarly, we can write: mi = emai ,with em assumed constant over the surface. This
assumption is correct if the model image m has been taken under uniform illumination, or if a
textured model free of illumination effects is available. Combining the above equations yields:

li =
ui

mi
=

ei

em
,

which does not depend on the surface albedo. It depends on the surface orientation and on the
illumination environment. In the specific case of a planar surface lit by distant light sources and
without cast shadows, this ratio can be expected to be constant for all i [102]. In the case of a
three channel color camera, we can write the function li that computes a color illumination ratio
for each color band:

li =
[

ui,r

mi,r

ui,g

mi,g

ui,b

mi,b

]T
,

where the additional indices r, g, b denotes the red, green and blue channel of pixel ui, respec-
tively.
In our illumination model we suppose that the whole surface can be described byK different

illumination ratios, that correspond to areas in ui with different orientations and/or possible cast
shadows. Each area is modeled by a Gaussian distribution around the illumination ratio µk and
with full covariance Σk. Furthermore we introduce a set of binary latent variables xi,k that take
the value 1 if and only if pixel i belongs to Gaussian k and 0 otherwise. Then, the probability of
the ratio li is given by:

p(li |xi,µ, Σ) =

K
∏

k=1

π
xi,k

k N (li;µk,Σk)
xi,k , (6.1)

where µ, Σ denote all parameters of theK Gaussians. πk weights the relative importance of the
different mixture components. Even though the ratios li are not directly observed, this model
has much in common with a generative model for illumination ratios.
So far we described the visible model. The occluded model is responsible for all pixels that

do not correspond to the model imagem. These pixels are assumed to be generated by sampling
the occluding color distribution, which we model as a mixture of K̄ Gaussians and a uniform
distribution. By this choice, we implicitly assume that the occluding object is composed of K̄
colors µk, handled by the normal distributions N (ui;µk,Σk), and some suspicious pixels that
occur with uniform probability 1/2563. Again, as in the visible model, the same latent variables
are used to select a specific Gaussian or the uniform distribution. The probability of observing a
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pixel value ui given the state of the latent variable xi and the parameters µ, Σ is given by:

p(ui |xi,µ, Σ) =
(πK+K̄+1

2563

)xi,K+K̄+1
K+K̄
∏

k=K+1

π
xi,k

k N (ui;µk,Σk)
xi,k . (6.2)

The overall model consists of the visible (Equation 6.1) and the occluded (Equation 6.2) models.
Our latent variables xi select the one distribution among the total K+K̄+1 components which
is active for pixel i, i.e.

∀i,
K+K̄+1

∑

k=1

xi,k = 1 .

Consider Figures 6.1(a) and 6.1(b) for example: The visible pixels could be explained by K =
2 illumination ratios, one for the cast shadow and one for all other background pixels. The
occluding hand could be modeled by the skin color and the black color of the shirt (K̄ =2). The
example in Figure 6.1 shows clearly that the importance of the latent variable components is not
equal. In practice, there is often one Gaussian which models a global illumination change, ı.e.
most pixels are assigned to this model by the latent variable component xi,k. To account for the
possibly changing importance, we have introduced πk that globally weight the contribution of
all Gaussian mixtures k=1 . . . K + K̄ and the uniform distribution k= K̄ + 1.
A formal expression of our model requires combining the visibility pdf of Equation 6.1 and

the occlusion pdf of Equation 6.2. However, one is defined over illumination, whereas the other
over pixel color, making direct probabilities incompatible. We therefore express the visible
model as a function of pixel color instead of illumination:

p(ui |xi,µ, Σ) =| Ji | p(li |xi,µ, Σ) , (6.3)

where | Ji | is the determinant of the Jacobian of function1 li(ui). Multiplying this equation
with Equation 6.2 composes the complete color pdf.
Some formulations define an appropriate prior model on the latent variables x. Such a prior

model would incorporate the prior belief that the model selection x shows spatial [89] and
spatio-temporal [22] correlations. These priors on the latent variable x have shown to improve
the performance of many vision algorithms [36]. However, they increase the complexity and
slow down the computation substantially. To circumvent this, we propose in the next section a
spatial likelihood model, which can be seen as a model to capture the spatial correlation nature
of pixels and which gives real-time performance.

6.2.2. Spatial Likelihood Model

In this section, we present an image feature and a way to learn off-line its relationship with
our target segmentation. Consider an extended image patch wi around pixel i for which we ex-

1To establish Eq. 6.3, let p(u) be a shortcut for the pdf p(ui | xi, µ, Σ), and q(l(u)) for p(li | xi, µ, Σ). The
probability of observing a pixel of color u within a color domain D is:

P (u ∈ D) =

Z

D

p(u)du =

Z

l(D)

q(x)dx =

Z

D

q (l(u)) | J | du ,

where | J | denotes the determinant of the Jacobian of l(u). It follows that q(l(u)) | J |= p(u).
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(a) (b) (c)

(d) (e) (f)

Figure 6.1.: Elements of the approach. (a) Background image m. (b) Input image u. (c)
Textureness image f 2. (d) Correlation image f 1. (e) Probability of observing f on
the background, according to the histogram h(fi | vi) (f) Probability of observing
f on the foreground, according to the histogram h̄(fi | v̄i).

tract a low dimensional feature vector fi = [f 1
i , f2

i ]. The basic idea behind our spatial likelihood
model is to capture texture while keeping a pixel independence assumption. To achieve real-time
performance we use two features that can be computed very fast. We model their distribution in-
dependently for the background and for the foreground, by histograms of the discretized feature
values. We use the normalized cross-correlation (NCC) between the input and model images as
one feature and a measure of the amount of texture as the other feature. f 1

i is given by:

f1
i =

∑

j∈wi
(uj − ūi) (mj − m̄i)

√

∑

j∈wi
(uj − ūi)

2 ∑

j∈wi
(mj − m̄i)

2
,

where wi denotes a window around pixel i, and ūi = 1
|wi|

∑

j∈wi
uj is the average over wi. The

correlation is meaningful only in windows containing texture. Thus, the texturedness of window
i is quantified by:

f2
i =

√

∑

j∈wi

(uj − ūi)
2 +

√

∑

j∈wi

(mj − m̄i)
2 .
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Figure 6.2.: Joint correlation and texturedness distributions over background and foreground
pixels.

Let vi represent the event that pixel i is visible and v̄i that it is occluded. We denote the visible
and occluded distributions by h(fi | vi) and h̄(fi | v̄i), respectively. They are trained from a set
of manually segmented image pairs. Since joint correlation and amount of texture is modeled,
the histograms remain valid for new illumination conditions and for new scenes. Therefore, the
training is done only once, off-line. Once normalized, these histograms model the probability of
observing a feature fi on visible areas or on occluded areas. Figure 6.2 depicts both distributions.
One can see that they are dissociate, especially in highly textured areas.

Figure 6.1 shows a pair of model and input images, the corresponding texture and correlation
images f 2

i and f 1
i , and the results of applying the histograms to f . It is obvious that the correla-

tion measure is only meaningful in textured areas. In uniform areas, because NCC is invariant to
illumination, it can not make the difference between the target object exposed to some uniform
illumination or a uniform occluding object.

Both histograms are learnt in the two visible and occluded cases which are related to the latent
variable xi designing one of the distributions of our model. Therefore, h can be linked to all
visible distributions corresponding to {xi,1, ..., xi,K} and h̄ to all occluded ones, corresponding
to {xi,K+1, ..., xi,K+K̄+1}.

6.2.3. Maximum likelihood estimation

Having defined the illumination and the spatial likelihood model, we are now in the position to
describe the Maximum Likelihood (ML) estimation of the combined model. Let θ={µ, Σ, π}
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denote the vector of all unknowns. The ML estimate θ̃ is given by:

θ̃ = arg max
θ

{

log
∑

x

p(u,f ,x |θ)
}

(6.4)

where p(u,f ,x | θ) = p(u,x | θ)p(f ,x | θ) represents the combined pdf of the illumination
and the spatial likelihood models given by the product of Equations. 6.3, 6.2 and the histogram
distributions h(fi | vi), h̄(fi | v̄). Since the histogram distributions are computed over an image
patch, the pixel contributions are not independent. However, in order to reach the real-time con-
straints, we assume the factorization over all pixels i in Equation 6.4 to be approximately true.
We see this problem as a trade-off between (i) a prior model on x, that models spatial interac-
tions [22, 36] with a higher computational complexity and (ii) a more simple, real time model for
which the independence assumption is violated, in the hope that the spatially dependent feature
description f accounts for pixel dependence.
The pixel independence assumption simplifies the ML estimate to:

θ̃ = arg max
θ

{

log
∏

i

∑

xi

p(ui, li, fi, xi |θ)
}

(6.5)

The expectation-maximization (E-M) algorithm can maximize Equation 6.5. It alternates the
computation between an expectation step (E-step), and a maximization step (M-step).

E-Step: On the (t + 1)th iteration the conditional expectation bt+1 of the log-likelihood w.r.t.
the posterior p(x | u,θ) is computed in the E-step. By construction, i.e. by the pixel indepen-
dence, this leads to a closed-form solution for the latent variable expectations bi, which are often
called beliefs. Note, that in other formulations, where the spatial correlation is modeled explic-
itly, the E-step requires iterative approximations like mean field [36]. The update equations for
the expected values bi,k of xi,k are given by:

bt+1
i,k=1...K =

1

N
πk | Ji | N (li;µ

t
k,Σ

t
k)h(fi |vi) (6.6)

bt+1
i,k=K+1...K̄

=
1

N
πkN (ui;µ

t
k,Σ

t
k)h̄(fi | v̄i) (6.7)

bt+1
i,K̄+1

=
1

N
πK+K̄+1

1

2563
h̄(fi | v̄i) ,

where N =
∑

k bt+1
i,k normalizes the sum of the beliefs b

t+1
i,k to one. The first line in Equation 6.6

corresponds to the beliefs that the kth normal distribution of the illumination visible model is
active for pixel i. Similarly, the other two lines (Equation 6.7) correspond to the beliefs for the
occluded model.

M-Step: Given the beliefs bt+1
i,k , the M-step maximizes the log-likelihood by replacing the

binary latent variables xi,k by their expected value bt+1
i,k .

µt+1
k =

{

1
Nk

∑N
i=1 bt+1

i,k li if k ≤ K
1

Nk

∑N
i=1 bt+1

i,k ui otherwise
, (6.8)
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where Nk =
∑N

i=1 bt+1
ik . Similarly, we obtain:

Σt+1
k =

{

1
Nk

∑N
i=1 bt+1

i,k (li − µk) (li − µk)
T if k ≤ K

1
Nk

∑N
i=1 bt+1

i,k (ui − µk)(ui − µk)
T otherwise

(6.9)

πt+1
k =

Nk
∑

k Nk
(6.10)

Alternating E and M steps ensure convergence to a local maximum. After convergence, we can
compute the segmentation by summing the beliefs corresponding to the visible and occluded
models. The probability of a pixel being described by the background model is therefore given
by:

p(vi | θ̃,u) =

K
∑

k=1

bi,k . (6.11)

In the next section, we discuss implementation and performance issues.

6.2.4. Implementation details

Our algorithm can be used in two different manners. First, it can run on-line, with a single
E-M iteration at each frame, which is fast to compute. On very abrupt illumination changes,
convergence is reached after a few frames (rarely more than 6). Second, the algorithm can run
offline, with only two images as input instead of a video history. In this case, several iterations,
typically 5 to 10, are necessary before convergence.
Local NCC can be computed efficiently with integral images, with a complexity linear with

respect to the number of pixels and constant with respect to the window size. Thus, the com-
plexity of the complete algorithm is also linear with the number of pixels, and the full process
of acquiring, segmenting, and displaying images is achieved at a rate of about 2.3 × 106 pixels
per second, using a single core of a 2.0GHz CPU. This is about 18 FPS for half PAL (360x288),
12 FPS for 512x384, and 5-6 FPS for 720x576 images.
Correlation and texturedness images, as presented in Section 6.2.2, are computed from single

channel images. We use the green channel only, because it is more represented on a Bayer
pattern. The correlation window is a square of 25 × 25 pixels, cropped at image borders.
For most experiments presented in this work, K = 2 and K̄ = 2. The histograms h and h̄

have been computed only once, from 9 pairs of images (about 2× 106 training pixels). Training
images do not contain any pattern or background used in test experiments.
The function li as presented in the previous section is sensitive to limited dynamic range and

to limited precision in low intensity values. Both following functions assume the same role with
more robustness and give good result:

lai (ui) =

[

arctan

(

ui,r

mi,r

)

arctan

(

ui,g

mi,g

)

arctan

(

ui,b

mi,b

)]T

lci (ui) =

[

ui,r + c

mi,r + c

ui,g + c

mi,g + c

ui,b + c

mi,b + c

]T

where c is an arbitrary positive constant. In our experiments, we use c = 64.
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6.2.5. Optional Graph-Cut for spatial coherence

The expectation-maximization algorithm presented above assumes pixel independence. Thanks
to cross-correlation that captures local texture, this abusive assumption does not degrade results.
However, produced segmentation are sometimes noisy. In that case, the segmentation problem
taking spacial consistency into account can be formulated as a weighted graph minimum cut
problem, for which efficient and globally optimal algorithms exist.
In theory, integration of a graph-cut algorithm in E-M is not directly possible, since the con-

vergence properties of E-M rely on computing the expectation of latent variables, while graph-
cut provide a binary segmentation. In practice, it is still possible to use it within an iterated
algorithm [89] or as a post-processing step following E-M, which is the approach we choose
here.
The graph is formulated as follow. The source node is linked to every pixel i, with a weight

of − log p
(

vi | θ̃,u
)

, the negative log-likelihood of pixel i to be visible (Equation 6.11). The

sink node connects pixels with a weight of− log p
(

v̄i | θ̃,u
)

and accounts for occluded pixels.

Each pixel is connected to its neighbors with a weight defined by the function κi,j . In our case,
we chose a constant weight for a 4-neighborhood2 :

κi,j =

{

1 if i, j are neighbors

0 otherwise

The minimum cut P̂ minimizes the following function:

min
P

−
∑

i∈P

log p
(

vi | θ̃,u
)

−
∑

i/∈P

log p
(

v̄i | θ̃,u
)

+
∑

i∈P

∑

j /∈P

κi,j .

It equivalently maximizes:

max
P

∏

i∈P

p
(

vi | θ̃,u
)

∏

i/∈P

p
(

v̄i | θ̃,u
)

∏

i∈P

∏

j /∈P

e−κi,j .

This minimum cut problem can be efficiently solved by considering the dual maximum flow
problem [15, 59, 89].
Even if the max-flow algorithm we use is efficient, segmenting a full image implies quite a

large graph and takes too much time for real-time applications. To improve speed, we actually
use an approximation that consists in cutting several separate small graphs rather than a sin-
gle large one. Computation is then concentrated on ambiguous pixels and does not loose time
questioning obvious ones. Figure 6.3 depicts such a partition of ambiguous areas.
Our algorithm works as follow. In a first pass, pixels are labeled as either definitely visible,

definitely occluded, or unknown. Labeling is done by thresholding the probability of Equa-
tion 6.11. Above 1 − e, it is visible. Under e, it is occluded. We take e = 0.001. A second
pass tags the neighbors of unknown pixels as unknown. A third pass assigns connected pixels

2Another option is to compute a weight based on the gradient of the input image, to model the idea that a change in
pixel values is often observable at occlusion boundaries [15].
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(a) (b)

(c) (d)

Figure 6.3.: Smoothing the visibility map using Graph Cut. (a) Input image. (b) Visibility proba-
bility of Equation 6.11, locally noisy. (c) Partition of the noisy areas. Each partition
is displayed with a different gray shade and composes a dissociate graph. (d) The
result of computing the minimum cut in each graph.
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(a) (b) (c)

Figure 6.4.: Segmenting the hand of Figure 6.1. (a) Result of [124] when the background model
adjusts too slowly to handle a quick illumination change. (b) When the background
model adjusts faster. (c) Our result.

to a graph using a flood fill algorithm. The maximum flow is computed, resulting in a minimum
cut and finally a segmentation that updates pixel label to either definitely occluded or definitely
visible.
The output of the algorithm is a smooth, spatially coherent, binary segmentation.

6.3. Results

The first step in our occlusion detection method consists in unwarping the input image. It rep-
resents the appearance of the object in the conditions in which the input image has been taken
and allows pixel to pixel comparison with the model image. We tested our algorithm with three
different geometric transformations. The simplest unwarping is the identity transform: The un-
warped image is the input image. In that case, the model image must be taken under the same
pose, and the problem is called background subtraction and is not directly useful for augmented
reality. The second type of geometric unwarping applies to planar objects. We have seen in
Chapter 4 how to obtain the homography registering the model image of a planar object with a
different view of the same object. Inverting an homography is as easy as computing a 3 by 3
matrix inverse. In that case, composing the unwarped image is done by applying the appropriate
homography to the input image. The third type of tested geometric transform is the 2–D hexago-
nal mesh of Section 4.2.1, it is able to model many deforming surfaces and results are presented
in the next chapter.

Comparison with background subtraction techniques Our approach to occlusion
segmentation is closely related to background subtraction, a technique aiming at segmenting
moving object in video sequences shot by a fixed camera. We show here that our method can
directly be applied for video surveillance, and that our way of handling illumination changes is
particularly robust compared to standard background subtraction practices.
We begin by the sequence of Figure 6.4 in which an arm is waved in front of a cluttered wall.
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Figure 6.5.: ROC curve for our method obtained by varying a threshold on the probability of
Equation 6.11. The crosses represent results obtained by [124] for different choices
of learning rate and decision threshold, two of which are visible on Figure 6.4(a)
and 6.4(b).

The arm casts a shadow, which affects the scene’s radiosity and causes the camera to automati-
cally adapt its luminosity settings. With default parameters, the algorithm of [124] reacts to this
by slowly adapting its background model. However, this adaptation cannot cope with the rapidly
moving shadow and produces the poor result of Figure 6.5(a). This can be prevented by increas-
ing the rate at which the background adapts, but, as shown in Figure 6.5(b), it results in the sleeve
being lost. By contrast, by explicitly reevaluating the illumination parameters at every frame,
our algorithm copes much better with this situation, as shown in Figure 6.5(c). To compare
these two methods independently of specific parameter choices, we computed the ROC curve
of Figure 6.5(d). We take precision to be the number of pixels correctly tagged as foreground
divided by the total number of pixels marked as foreground and recall to be the number of pixels
tagged as foreground divided by the number of foreground pixels in the ground truth. The curve
is obtained by binarizing using different thresholds for the probability of Equation 6.11. We also
represent different runs of [124] by crosses corresponding to different choices of its learning rate
and the decision threshold. As expected, our method exhibits much better robustness towards
illumination effects.

Figure 6.6 depicts a sequence with even more drastic illumination changes that occur when
the subject turns on one light after the other. The GMM based-method [124] immediately reacts
by classifying most of the image as foreground. By contrast, our algorithm correctly compares
the new images with the background image, taken to be the average of the first 25 frames of the
sequence.

Figure 6.7 shows the light switch benchmark of [109]. We again built the background repre-
sentation by averaging 25 consecutive frames showing the room with the light switched off. We
obtain good results when comparing it to an image where the light is turned on even though, un-
like the other algorithms [124, 49], we use a single frame instead of looking at the whole video.
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6. Handling Occlusions

Figure 6.6.: Top row: Three very different input images and a model image of the same scene.
The changes are caused by lights being turned on one after the other and the person
moving about. Bottom row: Our algorithm successfully segments out the person in
all three input images. The rightmost image depicts the completely wrong output of
a state-of-the-art approach [124] applied on the third image.

The foreground recall of 82% that appears in [49] entails a precision of only 25%, whereas
our method achieves 49% for the same recall. With default parameters, the algorithm of [124]
cannot handle this abrupt light change and yields a precision of 13% for a recall of 70%.
Finally, as shown in Figure 6.8, we ran our algorithm on one of the PETS 2006 video se-

quences that features an abandoned luggage to demonstrate that our technique is indeed appro-
priate for surveillance applications because it does not lose objects by unduly merging them in
the background.

Planar Objects Our method works well with planar objects. The geometric transform they
undergo is well modeled by the recovered homography, even if many features are occluded: The
few visible ones usually bring enough information to recover the pose. Since the orientation of
a planar object is by definition homogeneous, illumination effects are expected to be generally
simple. In practice, those caused by the occluding elements themselves are complex. In the
case of fingers holding a card, as depicted by Figure 6.9, the user’s hands cast shadows whose
intensity can be important. Therefore, modeling illumination with a mixture of two Gaussians,
as presented in this chapter, is adapted: The first Gaussian accounts for the global illumination
over the card, and the second for the shadow under the finger. The softer the shadow, the more
elongated the Gaussian in the intensity axis. For proper augmented reality, the visibility map,
computed in model image space, has to be warped again. It can be used as an alpha channel that
masks occluded virtual elements.

Non-rigid Surfaces Among the considered geometric cases, the non-rigid one is the most
general and the most difficult for several reasons. The many degrees of freedom of a non-rigid
model make difficult to compensate the lack of information due to occlusions, as opposed to the

100



6.3. Results

(a) (b) (c)

(d) (e) (f)

Figure 6.7.: Segmenting the light switch test images from [109]. (a) Background model. (b)
Test image. (c) Manually segmented ground truth. (d) The output of Zivkovic’s
method [124]. (e) Result published in [49], using an approach based on local binary
patterns. (f) Our result, obtained solely by comparing (a) and (b). Unlike the other
two methods, we used no additional video frames.

rigid planar case. Illumination effects are also more complex, since the surface orientation is
heterogeneous. In that case, our assumptions of two Gaussians can be seen as modeling parts of
the surface that are directly illuminated, while the other Gaussian accounts for indirect light on
shaded areas. Shadows are either self-cast or cast by an occluding object.
In our experiments, unwarping was simply done by sampling the input image with coordi-

nates transformed with the function Tθ(p) of Equation 4.1, a task conveniently executed by the
GPU. Figure 6.10(d) shows such an unwarped image. The quality of the unwarped image is
directly linked with the registration accuracy which might decrease in the presence of strong
occlusions. The abundance of texture painted on our test T-shirt allows us to circumvent this is-
sue. The little registration jitter is passed on the unwarped image and further on the normalized
cross-correlation step of occlusion detection. In this case, the graph cut smoothing technique of
Section 6.2.5 greatly improves the final visual quality.
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(a) (b)

(c) (d)

Figure 6.8.: PETS 2006 Dataset. (a) Initial frame of the video, used as background model. (b)
Frame number 2800. (c) The background subtraction of [124]: The abandoned bag
in the middle of the scene has mistakenly been integrated into the background. (d)
Our method correctly segments the bag, the person who left after sitting on the
bottom left corner, and the chair that has been removed on the right.

102



6.3. Results

(a) (b) (c)

Figure 6.9.: Occlusion segmentation on a moving object. (a) Input frame in which the card is
tracked. (b): Visibility mask produced by our method. (d) We use it as an alpha
channel to convincingly draw the virtual text and account for the occluding hand.

(a) (b)

(c) (d) (e)

Figure 6.10.: Augmenting an occluded T-shirt. (a) Input frame. (b) Augmented result. (c) Ref-
erence image. (d) Unwarped image. (e) Visibility map computed from (c) and (d).
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7. Putting it All Together

This Chapter presents AR results obtained by putting together the presented algorithms, thus
verifying their suitability for real AR applications that require robustness, ease of deployment,
computation speed, accuracy, and visual quality.

7.1. Artistic Augmented Reality

To check that our approach to AR actually corresponds to the constraints of a real application,
we collaborated with an artist to create two AR applications. Camille Scherrer, a student at
the university of art and design, Lausanne (ECAL), imagined, designed, and manufactured two
books and animations to augment their pages using our method.
Several points facilitated our collaboration. First, since our approach only relies on natural

texture, the artist could design the book without having to integrate technical elements. Second,
the choice of 2–D AR instead of 3–D facilitated the integration of virtual elements with the
real pages: The artist was able to paint augmented creatures directly over a reference frame,
immediately seeing the mixed result. At runtime, our system could then easily register the
reference frame and warp the virtual creatures to the correct location and perspective. Third, the
automation of our approach allowed the artist to insert new pages in the system without requiring
any technical support since adding a new pattern does not require any parameter tuning. In this
manner, the artist has been able to produce two artworks, The Haunted Book and Le monde des
montagnes.

The Haunted Book The Haunted Book, depicted by Figure 7.1, is inspired by old poetry
books. The integration of very recent technologies into this old and dusty universe makes it
unusual and particularly interesting. The Haunted Book is based on a poem written by Thomas
Hood, The Haunted House. As the narrator in the poem walks through the haunted house, the
reader also walks through the book and discovers hidden creatures.
The artist’s interpretations of these hidden creatures appear as a skeleton’s arm grabbing out

of a letterbox, flying fish jumping out of an old cupboard, and loads of ugly insects running down
a sofa. The animated engravings create a subtle and adapted way to enhance the illustrations by
staying in the universe of the poem. The AR technology used for the project yields this subtlety
by staying discreet.

Le monde des montagnes Le monde des montagnes, the world of mountains, is a very
particular book. When one observes it through the eye of a camera, a whole invisible universe
reveals itself beyond the printed pages. Between remembering and strange stories, the reader
discovers, page after page, an animated world that mixes with reality. The artwork is based on
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Figure 7.1.: An example of animation from the Haunted Book.

Figure 7.2.: The AR setup developed by Camille Scherrer for augmenting a magic book. The
camera is hidden in the lamp, and augmented images are displayed on the laptop
screen.

106



7.2. 3–D Non-rigid Augmented Reality

Figure 7.3.: Augmented pages of a magic book designed by Camille Scherrer.

two main elements. First, an illustrated book telling stories happening in the mountain. Second,
a laptop displaying images shot by a camera, as depicted by Figure 7.2. The pages of the book
appear augmented by animations that smoothly blend into the original book illustrations, as
shown by Figure 7.3. The unobtrusiveness of AR in our approach is here further improved by
hiding the camera in the lamp.

The Haunted Book and Le monde des montagnes demonstrate an innovative way of integrating
virtual creatures in the real pages of a book. The augmented books create a desire of searching
for moving pictures through the pages. AR makes paper and computer screen meet, extracting a
part of imaginary out of a reality our eyes can see and our hands can concretely feel.

The resulting atmosphere convinced several art professionals, namely Alain Bellet (Head of
the Media and Interaction Design Unit at écal), Angelo Benedetto (Head of the Visual Com-
munication Unit at écal), Michael Zai (founding member of etoy and professor at the Media
and Interaction Design Unit at écal), and Gael Hugo. The success of our collaboration and the
quality of result prove that our approach has contributed to increasing the maturity and usability
of augmented reality techniques [95].

7.2. 3–D Non-rigid Augmented Reality

To verify the capability of our approach to provide 3–D non-rigid AR, we designed an experi-
mental application. The user holds and deforms in its hand a textured sheet of paper. A fixed
camera oriented towards the user films the scene. A computer screen displays the augmented
stream. Four virtual pyramidal poles appear to be to be glued to the paper, and electric arcs con-
nect their spikes. As the paper deforms, the poles’ orientation changes, modifying the path of
electric sparks. New users usually need less than a minute to understand this interaction. They
can then play to give the electric arc the shapes they want, as depicted by Figure 7.4.

This experimental application relies on the registration method described in Section 4.3. It
runs at about 7-10 frames per second. It shows that our system is robust to user actions, that it
has a delay short enough and a frame rate fast enough for fluent interaction, and that its accuracy
is sufficient. Our system rises to the augmented reality challenge. Overall, users enjoyed the
application. Its reactivity and accuracy produce a convincing augmented reality effect.
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Figure 7.4.: A toy application to illustrate our method’s suitability for 3–D non-rigid augmented
reality purposes.

Figure 7.5.: A deformed sheet of paper augmented with a virtual tree and a virtual monster. The
author’s finger clearly appears over the augmented tree. The shadow due to paper
bending is also visible on the tree. Left: Input frame. Right: Augmented result.

7.3. Retexturing Non-rigid Surfaces

We present here results that achieve realistically shaded and occluded non-rigid retexturing. Our
system superimposes a partially transparent virtual layer over a deforming T-shirt or sheet of
paper. The augmentation appears to be glued to the surface. Its texture is modified and we call
that process retexturing. Achieved in real-time and interactively, it is a flexible form of AR. Our
approaches to non-rigid registration and realistic shading allows for convincing replacement
of the real texture with a logo, a blank page, or a virtual creature. It combines the 2–D non-
rigid registration of Section 4.2, the illumination handling for retexturing of Section 5.3 and the
occlusion handling of Chapter 6. Illumination effects on the real surface are reproduced on the
augmented one. Occlusions are also handled, and fingers or other real object can occlude virtual
ones. Figure 7.5 depicts a frame of such an augmented video stream.
Our system runs at a rate of about 6-8 frames per second, for 512 × 384 input images. Ta-
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Task Rel. Weight

Feature detection 6.5%
Feature matching 23.7%
Registration 52.9%

E-M for occlusion segmentation 13.2%
Graph Cut 3.7%

Table 7.1.: The tasks carried out by our system and their relative computation time.

ble 7.1 summarizes the relative computation weight of the different tasks. The time profile
depends on many parameters such as the input video resolution or the number of detected fea-
ture points. Moreover, several parts could be accelerated by using the GPU. Therefore, Table 7.1
only provide a rough idea of the relative importance of each stage. Unsurprisingly, the heaviest
task is non-rigid registration, more precisely the successive optimizations of Equation 4.2 with
different radii of confidence. They take about 53% of executed instructions. The second task is
wide-baseline feature matching, with about 24%.
Our prototype proves the feasibility of augmented reality for non-rigid surfaces. The result

is fast enough for interactive use. Illumination and occlusion effects provide a realistic visual
quality.
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8. Conclusion

We presented a framework for augmenting images of non-rigid surfaces acquired by a single
standard camera. We developed new algorithms for geometric registration, illumination esti-
mation, and occlusion segmentation. We emphasized all along accessibility both for end-users
and for application designers. We ensured the consistency of our framework by making all its
components comply to a common set of constraints:

• It can all handle both rigid and non-rigid surfaces;

• It does not require any engineering of the scene;

• It runs in real-time;

• It requires a single camera but can take advantages of additional ones, if available;

• It delivers high visual quality;

• It is easy to use, both for end-users and for application designers.

We demonstrated it using a wide range of deforming objects such as sheets of paper, rubber
balloon, sails and T-shirts. Our key contribution has therefore been to make AR possible in such
a challenging context and we conducted many experiments to support this claim.
Observed automated initialization, tracking accuracy, and computation speed prove that our

framework is a solid basis for convincing AR applications. One of them is a toy application in
which the user plays with an electric arc deforming with poles virtually hammered into a real
sheet of paper. Novice users very quickly understand the interaction principle and enjoy it, thus
validating our approach. The suitability of our framework for AR application has also been
demonstrated by augmenting target objects of size ranging from a credit card to a board of about
100 by 80 cm.
To ensure that our framework is easy to use and to deploy, we distributed a software package,

BazAR [65]. A number of users successfully used it to good effect. Among them are the French
company Total Immersion, the Norwegian one ARmusement, and the artist Camille Scherrer.
Her two artworks showcase the high visual quality that can be achieved using our software.
Furthermore, it is easy to deploy because it handles one or more camera, it only makes weak
assumptions on the environment, and it runs on standard hardware.
Even in the presence of complex illumination conditions, our framework is able to render

virtual objects shaded with real light. We tested this ability by augmenting a card with a virtual
teapot that reflects the change in illumination color occurring when the user switches a lamp
on. Our approach to retexturing non-rigid surfaces also handles complex illumination effects,
such as saturation, cast shadows and specularities. To verify this behavior, we successfully
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and realistically augmented a deforming T-shirt partially illuminated with a projector. We also
augmented a sheet of paper in a plastic cover causing specularities. The reflections of a lamp
and a window are visible on the augmented image, proving the flexibility of our framework in
that domain.
Poor handling of virtual objects occluded by real ones might cause augmentation to be un-

comfortable and unrealistic. Therefore, our framework integrates a new method for occlusion
segmentation and we successfully retextured a moving planar card and a deforming T-shirt oc-
cluded by fingers and other objects.
Dealing with multiple cameras in AR requires their relative registration, a process that can be

tedious. However, our new approach to geometric and photometric camera calibration handles it
gracefully, requiring minimal interaction from the user. We were able to calibrate five cameras
accurately enough for AR purposes, or two webcams plugged on the same laptop. Once calibra-
tion is done, our framework can augment every view, using any camera that can see the target
object. If the object is seen by several cameras, the accuracy is improved.
Overall, our experiments well demonstrate the capacities of our framework. They prove the

possibility of achieving convincing AR on deforming surfaces only with a monocular camera.

8.1. Impact of the Thesis

Beside our scientific publications, our work had an impact for a number of users, through the
several pieces of software we distributed.

Deform3D Deform3D is an image analysis software that measures the deformations of non-
rigid objects. Starting from a reference shape and at least one picture of the deformed object,
Deform3D recovers both its deformation and the camera pose. It has been used by Voiles Phi
SA, a Swiss sailmaking company, to improve the design of Alinghi’s spinnakers. It integrates
Mathieu Salzmann’s deformation models [90, 92]. The graphical user interface, visible on Fig-
ure 8.1, has been developed by André Mazzoni and Konstantin Starchev.

Alinghi Demonstration We developed an interactive demonstration of non-rigid sail mea-
surement. It is composed of a piece of sail on a mobile support, a webcam, and two screens.
Users can deform the piece of sail and immediately see on one screen that the 3–D representa-
tion follows. The other screen shows the image acquired by the webcam, augmented with the
surface mesh. As depicted by Figure 8.2, the demonstration was open to the public in Valencia,
Spain, during about 18 months. It was also exposed in the Olympic Museum, Lausanne, from
September 20, 2007 to January 6, 2008.

BazAR BazAR is a software package we distributed under the GNU General Public License
(GPL) in October 2006 [65]. It contains the planar object detector and the geometric camera
calibration both described in Chapter 4. It also includes photometric calibration and is able to
augment 3–D objects, as explained in Chapter 5. It has been licensed to several companies, and
we received feedback by e-mail from France, Norway, Italy, United Kingdom, Spain, Denmark,
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Figure 8.1.: A screenshot of Deform3D, our sail deformation measurement software.

Figure 8.2.: Our real-time demonstration in Alinghi base, Valencia, Spain. Visitors can deform
a piece of sail and see both the image filmed by a webcam and the 3–D deformed
shape.
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Sweden, Czech Republic, Germany, Singapore, Israel, Lebanon, Poland, United States, China,
Netherlands, New Zealand, and Canada.

8.2. Limitations and Future Work

When a surface deforms, its shading changes. Bumps and folds form shaded and highlighted
areas whose analysis could be used to improve registration accuracy. Because our method only
considers texture, it heavily depends on it. Such an improvement can potentially reduce this
dependency.
The presented approach is mostly based on feature points. Therefore, texture such as straight

lines remains unexploited. Techniques such as template matching or texture edge tracking could
also improve accuracy and decrease texture dependency.
In our method, self-occlusions are ignored. Integrating them in the process could allow better

accuracy. It would also make the method compatible with non-convex objects having large self-
occluded areas.
A limitation of our system is the need for a manually created model of the target object.

Even if this often reduces to taking a single picture, this process could be extended to automatic
surface recognition and modeling from video. One could imagine a video editing software that
automatically detects surfaces visible in a sequence. It would then let the user select a surface in
one frame and edit its appearance. The software could then automatically apply the modification
on all frames showing the same surface, handling gracefully deformation, illumination effects
and occlusions.
Our camera geometric and photometric calibration is limited to a pinhole camera model. A

possible future work could extend it to a thin lens camera model. It would imply estimating
vignetting, radial distortion, focal distance, camera aperture, and point spread function. Such
an extended model would allow realistic integration of virtual objects on images taken by cheap
and wide angle cameras with important distortion. Rendering out-of-focus virtual objects would
also become possible.
A further improvement would be to change our way of modeling illumination. Until now, we

do not make any assumption on the illuminant color, letting it live in a 3–D space. However,
it has been demonstrated that assuming a Plankian color is a reasonable assumption, reducing
the uncertainty of the illuminant to its scalar temperature [33]. Such an assumption requires
camera response calibration. It would greatly help for separating texture and light patterns. The
occlusion segmentation of Chapter 6 would also be simplified, since the 3–D Gaussian mixture
model could be reduced to a single dimension.
Our approach to illumination does not take shadows of virtual objects over real ones into

account. The system could be extended to estimate the geometry of the environment and the
direction of incoming light in order to cast virtual shadows on real surfaces.
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A. Wide-baseline Keypoint Matching

The goal of keypoint matching is to establish correspondences between two images of the same
object. Instead of matching every pixel, which would be both costly and difficult in uniform
areas, an efficient option is to first try to detect points that are easier to locate, called keypoints.
We do not address here the issue of keypoint extraction, since we use a rather standard approach.
However, because we intensively rely on it, we present a description of an approach to point
matching under large viewpoint and illumination changes.

A.1. Keypoint Matching as a Classification Problem

Most of traditional point matching methods rely either on using ad hoc local descriptors or on
estimating local affine deformations [110, 6, 76, 94, 69]. By contrast, we treat wide-baseline
matching of keypoints as a classification problem, in which each class corresponds to the set of
all possible views of such a point.
During training, given at least one image of the target object, we synthesize a large number

of views of individual keypoints. If the object can be assumed to be locally planar, this is done
by simply warping image patches around the points under affine or homographic deformations.
Otherwise, given the 3–D model, standard Computer Graphics texture-mapping techniques can
be used. This second approach is more complex but relaxes the planarity assumptions. At run-
time, it is then possible to use powerful and fast classification techniques to decide to which
view set, if any, an observed keypoint belongs, which is as effective and much faster than the
usual way of computing local descriptors and comparing their responses [64].
Figures A.1 and A.2 depict the construction of the set of image patches that represent the class

corresponding to one point. A single object can have many keypoints, each of which, in turn,
has many possible appearances. If some classification method could tell, given a new patch, to
which point it belongs, it would provide a strong link between the image and the model. Several
of these correspondences allows registration, as explained in Chapter 4. In our work, we used
two methods: Randomized trees [63] and Ferns [80]. We only give here a description of ferns,
because they outperforms decision trees.

A.2. Random Ferns1

To classify patches, we use the method first introduced in [80] that rely on non-hierarchical
structures called ferns. Each one consists of a small set of binary tests and returns the probabil-
ity that a patch belongs to any one of the classes that have been learned during training. These

1The author would like to thank Mustafa Özuysal and Vincent Lepetit for the description of ferns.
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Figure A.1.: The construction of a viewset. Three synthetic views are generated from the original
image on the left. The white square represents the patches extracted from these
images to build a viewset of a keypoint on the nose.

Figure A.2.: Using two different training images to build the viewset of the same keypoint.
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Figure A.3.: (a) For each patch a fern node outputs a binary number, and a fern with S nodes
outputs a number between 0 and 2S−1. For multiple patches of the same class, we
can model the output of a fern with a multinomial distribution. (b) At the end of
training, we have distributions over possible fern outputs for each class. Courtesy
of Mustafa Özuysal [80].

responses are then combined in a Naive Bayesian way. We train the classifier by synthesiz-
ing many views of the keypoints extracted from a training image as they would appear under
different perspective or scale.

Ferns are based on simple binary tests that compare the intensity of two pixels within the
patch. The pixels are picked completely at random. A fern is a set of S grouped binary test.
Since each test returns either 0 or 1, the fern assigns to an image patch a number between 0 and
2S−1. During a training phase, each patch of a class is tested against several ferns, resulting
in distributions that measures how likely this feature point is to obtain this number when tested
with this fern (Figure A.3). Recognizing a new patch then amounts to test it against all ferns and
to pooling their answers in a Naive Bayesian manner (Figure A.3).

More precisely, the set of all possible appearances of the image patch surrounding a keypoint
is treated as a class. Therefore, given the patch surrounding a keypoint detected in an image,
the task is to assign it to the most likely class. Let ci, i = 1, . . . ,H be the set of classes and let
fj, j = 1, . . . ,N be the set of binary features that will be calculated over the patch we are trying
to classify. Formally, we are looking for

ĉi = arg max
ci

P (C = ci | f1, f2, . . . , fN ) ,
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where C is a random variable that represents the class. Bayes’ Formula yields

P (C = ci | f1, f2, . . . , fN ) =
P (f1, f2, . . . , fN | C = ci)P (C = ci)

P (f1, f2, . . . , fN )
.

Assuming a uniform prior P (C), and since the denominator is simply a scaling factor that it is
independent from the class, our problem reduces to finding

ĉi = arg max
ci

P (f1, f2, . . . , fN | C = ci) . (A.1)

The value of each binary feature fj only depends on the intensities of two pixel locations dj,1

and dj,2 of the image patch. We therefore write

fj =

{

1 if I(dj,1) < I(dj,2)
0 otherwise

,

where I represents the image patch. Since these features are very simple, many (N ≈ 300) are
required for accurate classification. Therefore a complete representation of the joint probability
in Equation (A.1) is not feasible since it would require estimating and storing 2N entries for each
class. To make the problem tractable while accounting for the dependency between features, a
good compromise is to partition them into M groups of size S = N

M . These groups are called
Ferns and the joint probability for features in each Fern is computed. The conditional probability
becomes

P (f1, f2, . . . , fN | C = ci) =
M
∏

k=1

P (Fk | C = ci) , (A.2)

where Fk = {fσ(k,1), fσ(k,2), . . . , fσ(k,S)}, k = 1, . . . ,M represents the kth fern and σ(k, j) is
a random permutation function with range 1, . . . ,N .
For training, we assume that at least one model image of the object to be detected is available.

Training starts by selecting a subset of the keypoints detected on this model image. This is done
by deforming the image many times, applying the keypoint detector, and keeping track of the
number of times the same keypoint is detected. The keypoints that are found most often are
assumed to be the most stable and retained. These stable keypoints are assigned a unique class
number. The training set for each class is formed by generating thousands of sample images
with randomly picked affine deformations.
The training phase estimates the class conditional probabilities P (Fm | C = ci) for each Fern

Fm and class ci, as described in Equation A.2. For each Fern Fm, these terms are:

pk,ci
= P (Fm = k | C = ci) , (A.3)

where the notation is simplified by considering Fm to be equal to k if the base 2 number formed
by concatenating the binary features of Fm is equal to k. With this convention, Ferns can take
K = 2S values and, for each one, we need to estimate the pk,ci

, k = 1, 2, . . . ,K under the
constraint

K
∑

k=1

pk,ci
= 1.
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Figure A.4.: To recognize a new patch, the outputs selects rows of distributions for each fern, and
these are then combined assuming independence between distributions. Courtesy
of Mustafa Özuysal [80].

The simplest approach would be to assign the maximum likelihood estimate to these parameters
from the training samples. For parameter pk,ci

it is

pk,ci
=

Nk,ci

Nci

,

where Nk,ci
is the number of training samples of class ci that evaluates to Fern value k and Nci

is the total number of samples for class ci. These parameters can therefore be estimated for each
Fern independently. Figure A.3 illustrates the training process.
In practice however, this simple scheme yields poor results because if no training sample for

class ci evaluates to k, which can easily happen when the number of samples is not infinitely
large, both Nk,ci

and pk,ci
will be zero. Since we multiply the pk,cj

for all Ferns, it implies
that, if the Fern evaluates to k, the corresponding patch can never be associated to class ci, no
matter the response of the other Ferns. This makes the Ferns far too selective because the fact
that pk,ci

= 0 may simply be an artifact of the necessarily limited size of the training set. To
overcome this problem, pk,ci

is taken to be

pk,ci
=

Nk,ci
+ 1

Nci
+ K

.

It amounts to introduce a uniform Dirichlet prior [12] over feature values. If a sample with a
specific Fern value is not encountered during training, this scheme will still assign a non-zero
value to the corresponding probability.
At runtime, recognition is achieved by computing Equation A.2 for each class and taking the

one with the highest probability, as depicted by Figure A.4.
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B. Camera Calibration

Previous appendix presented a wide baseline feature matching technique that, combined with
RANSAC, can allow detection of a planar object, fixing the 8 DoF of an homography trans-
formation. We explain here how to exploit this detection to calibrate the geometry of one ore
more fixed camera, with potentially non-overlapping views. Calibrating cameras is essentially
a solved problem. However, the framework of Section 2.4 forbids complex manual operations,
or specialized hardware constraints. We present here a method suitable for any unaware user to
use.
Before entering into technical details, we shall mention what is camera calibration, why it is

useful for augmented reality, and why it takes an important space in this work.
Camera calibration is the process of recovering internal and external geometric properties

of the camera. Internal parameters are the focal length, the principal point, the image skew
and ratio. For augmented reality purposes, focal length is an important parameter: Rendering
a virtual object with a very close virtual camera whose angle of view is large leads to quite a
different result than a camera placed far away with a strong zoom. Therefore, 3–D augmented
reality requires calibration. Traditional augmented reality software, such as ARToolkit [1], often
assumes a universal and arbitrary calibration. By contrast, we propose a user friendly method
that allows final users to calibrate their camera.
As detailed in Chapter 5, illuminating virtual objects with real light improves the visual ex-

perience of augmented reality. However, in the case of 3–D objects, this process requires a
photometric calibration that in turn depends on geometric calibration. Because, augmented re-
ality can be achieved without these visual quality considerations, they are not acceptable at any
cost. Users are generally not willing to spend much efforts on calibration. This is why our
approach is focused on automating every step rather than seeking for accuracy.
Our geometric calibration procedure includes several stages. Our system first computes ho-

mographies between the geometric plane of the target object and its image projections. It then
retains the most reliable ones and the corresponding frames to estimate the intrinsic camera
parameters and the relative pose of the calibration object with respect to the cameras in the cor-
responding frames. In turn, these poses are used to select a common referential and to compute
the positions and orientations of the cameras with respect to each other. Finally, our system
performs global non-linear minimization to refine these estimates. We review related work and
outline the individual steps of this process below. Chapter 5 extends it to photometric calibration.

B.1. Related Work

Calibration algorithms that do not require an object known a priori are sometimes called auto-
calibration algorithms. They usually involve a moving camera that is calibrated by simultane-
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B. Camera Calibration

Figure B.1.: Four static cameras whose calibration is necessary for augmented reality.

ously recovering pose parameters and reconstructing the 3–D structure of the scene. However,
they are not well adapted to computing the relative positions of multiple cameras. Furthermore,
they lack robustness.

We therefore focus here on methods that rely on a calibration object or pattern because they
are much more reliable. Commercially available systems rely on tri-dimensional calibration ob-
jects with retro-reflective markers, spheres, or disks on them, which are often complex to build
and cumbersome. A notable exception are approaches such as [70] that only involve a moving
wand with two markers on it. However, all methods that depend on retro-reflective markers re-
quire changing the shutter speed to reliably extract the markers from the images, which prevents
simultaneous geometric and photometric calibration. Similarly, using light patterns emitted by
a laser pointer as in [105] is a very practical approach to geometric calibration but requires
modifying the cameras settings.

Our system falls into the category of recent approaches that rely on a planar target moved in
front of the camera [104, 121]. This is attractive because such a target can be built by simply
printing a pattern on a sheet of paper. These earlier techniques, however, were only designed to
recover the internal parameters of a single camera. Here we are also interested in the positions
and orientations of the cameras with respect to each other. The method closest to ours that we
are aware of is presented in [111]. As ours, it provides both the intrinsic parameters and relative
poses of a multi-camera system using a planar target. However the parameters are estimated via
factorization of a matrix built from homographies between image pairs. This requires that all
the positions of the planar target must be seen from all the cameras simultaneously. This is a
major limitation that our method does not have.
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(a) (b) (c)

Figure B.2.: Some examples of calibration patterns we used to test our system. These reference
images serve to train a classifier, As discussed in Appendix A. It is then used
to match them against input frames and provide homographies to the geometric
calibration process. The images are acquired under diffuse illumination so that the
normalized pixel intensities are proportional to the albedo estimates required by the
illumination model of Section 5.2.

B.2. Selecting the best Homographies

As explained in the beginning of this chapter, our approach can compute the homography re-
lating an input image and a reference image of a planar object, such as the ones depicted by
Figure B.2. This happens when the user waves a calibration pattern in the field of view. Unlike
checkerboard-based methods, our approach to estimating the homographies is sufficiently robust
not to generate erroneous matches that would have to be removed by hand. What happens in
practice is that when the pattern is either occluded or too slanted, it is simply not detected.
However, this is still not quite enough because some of these homographies are inherently

ambiguous or singular from a calibration point of view. As shown in Figure B.3, these unreliable
homographies come in two flavors. First, the ones that insufficiently distort the pattern are
ambiguous and, depending on the noise, may yield wildly different pose estimates. Second,
those that distort the pattern too much also produce unreliable pose estimates because the interest
points become difficult to locate precisely enough.
To overcome this problem, we define a square in the plane attached to the pattern and measure

the angle at each corner after warping it by the homography. If one of the angles is too large
or too close to π

2 , the homography is rejected. More formally, a homography H is rejected if at
least one of the angles α of the warped square verifies

cos(α) > cos(α0) or
cos(α) < cos(π − α0) or
cos(π

2 + α1) < cos(α) < cos(π
2 − α1).

Good results have been achieved using α0 = 0.01 and α1 = 0.005. Remaining homographies
are then sorted by number of matches and only the best ones are kept. In practice, we retain
around fifty for each camera. As will be shown in Section B.7, this is enough to guarantee
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H1

H2

H3
H4

H5

Fronto−parallel view

of the calibration 

object

Figure B.3.: Dropping unreliable homographies. Homography H3 is ignored because, with
such a slanted surface, keypoint detection becomes inaccurate and error-prone. H5

is also discarded because it yields a calibration singularity. The other homographies
can be safely kept.

accuracy without imposing an unnecessary computational burden. From an interactive point of
view, this selection is done on-line: The user keeps moving the pattern until the system has
enough valid homographies.

B.3. Initial Estimation of the Internal Parameters

The internal parameters are first estimated for each camera individually, from the homographies
Hc←p relating camera c and pose p, using a method similar to the ones of [104, 121]. The
computation is quite standard and is described in Section B.8, at the end of this appendix. This
yields for each camera c a matrix of internal parameters

Kc =





τcfc 0 u0c

0 fc v0c

0 0 1



 , (B.1)

where fc stands for the focal length, τc for the aspect ratio, and (u0c, v0c)
⊤ for the principal

point. These internal parameters of all the cameras will then be refined together with the external
ones during the non-linear global minimization of Section B.6.

B.4. Initial Estimation of the Poses

We recover the external parameters of each camera in a common referential in two steps. First,
our algorithm computes external parameters in a coordinate system attached to the calibration
pattern for each frame independently by making use of the internal parameters as estimated
previously and the homography related to the frame. It then selects a common referential and
computes camera poses in this referential by composing rotations and translations between pairs
of frames.
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Figure B.4.: The graph corresponding to the network of Figure B.5. The common referen-
tial is defined by pose p0, which is seen by three cameras while p1 is seen by
only two. The pose [R, t]c3 of camera c3 in this referential can be recovered
by composing poses with respect to individual cameras. In this case, [R, t]c3 =
[R, t]c3←p1

[R, t]p1←c2
[R, t]c2←p0

.

Displacements between the Calibration Object and the Individual Cameras Given
a homography and the intrinsic parameters, we estimate the displacement of the calibration
object with respect to the camera as described in the appendix. This step gives us the relative
rotation R and translation t of the calibration object with respect to the camera. Together, they
represent the rigid displacement corresponding to pose p as seen from camera c. We write this
displacement as the 4 × 4 matrix

[R, t]c←p =

[

Rc←p tc←p

0 1

]

. (B.2)

The reverse displacement is computed by inverting the matrix which we denote as [R, t]p←c.

B.5. Handling Non-Overlapping Cameras

In practice, the calibration object may never be seen by all cameras simultaneously. Our system
therefore selects as a common referential the one attached to the pose of the calibration object
seen by the largest number of cameras. It then expresses all the external camera parameters in
this referential by composing the displacements of Equation B.2 and their inverses.
Figure B.5 illustrates this behavior. In this case, p0 provides the common referential because

it is seen by three cameras whereas p1 is seen by only two. Even though camera c3 does not
see p0, its external parameters in this referential can be estimated by composing the pose of p0

with respect to camera c2 with the displacement between cameras c2 and c3, which can itself be
estimated from the poses of p1 with respect to these two cameras.
Recovering such chains amounts to compute paths between nodes of a connected graph, which

is well understood from an algorithmic viewpoint [45]. More specifically, we define a graph
whose nodes correspond to the cameras and the poses of the calibration object, such as the one
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p

p

c

c

c0

0

1

1

2

3c

Figure B.5.: A camera network. In this example, the field of view of camera c3 does not overlap
with those of cameras c0 and c1. Nevertheless, a full registration is still possible.
The displacement between cameras c2 and c3 can be estimated when the pattern is
in pose p1, while the relative positions and orientations of cameras c0, c1, and c2

can be estimated using pose p0. By chaining these estimates, we can express the
external camera parameters for all cameras in a common referential.
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depicted by Figure B.4. An edge links a camera node and a pose node when the camera sees the
pose and is labeled with the corresponding displacement.
Let p0 denote the pose that defines the common referential, and [R, t]c the pose parameters

of camera c in this common referential. Since we have by definition [R, t]c = [R, t]c←p0
, we

first look for a path between the p0 and c nodes, which we write as

p0 → cσ(1) → pσ(2) → cσ(3) → . . . pσ(n) → c .

where σ(.) is a mapping function on the indices that defines the path. Note that the path alternates
object pose nodes and camera nodes. It gives us a way to compute [R, t]c from the displacements
we just computed since

[R, t]c = [R, t]c←p0
=

[R, t]c←pσ(n)
. . . [R, t]cσ(3)←pσ(2)

[R, t]pσ(2)←cσ(1)
[R, t]cσ(1)←p0

.

The [R, t]p pose parameters of the calibration object can be estimated similarly.
Obviously, this will only work if the graph has one single connected component. In practice,

assuming that no camera has a field of view that does not overlap at all any of the others, this is
always the case if we move the calibration pattern sufficiently.

B.6. Refining the Estimation

Computing displacements by composing pairwise motions is effective but not particularly accu-
rate. Therefore, to refine not only the pose parameters but also the intrinsic ones, we minimize
with respect to all cameras simultaneously the sum of the reprojection errors for the point corre-
spondences used during the detection step of Section B.3. This bundle adjustment is expressed
as

C
∑

c=1

P
∑

p=1

M(c,p)
∑

k=1

∥

∥

∥

∥

∥

∥

(

uc,p,k

vc,p,k

)

− proj



Kc, [R, t]c [R, t]−1
p ,





Xc,p,k

Yc,p,k

0









∥

∥

∥

∥

∥

∥

2

, (B.3)

where

• C is the number of cameras, P the number of poses of the calibration object, andM(c, p)
the number of matches found by the detection stage for camera c and pose p. M(c, p) = 0
if pose p of the calibration object is not seen by camera c;

• [uc,p,k, vc,p,k]
⊤ and [Xc,p,k, Yc,p,k, 0]

⊤ are respectively are a 2–D point and a 3–D point
matched by the detection step;

• proj(K, [R, t] ,M) returns the projection of 3–D pointM under pose [R, t] and internal
parametersK.

To increase the robustness of our algorithm, we introduce a simple robust estimator in Equa-
tion B.3 to eliminate potentially incorrect correspondences.
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Cam 1 Cam 2 Cam 3 Cam 4 Cam 5
τf -0.16% 0.32% 0.27% 1.12% 0.56%
f -0.08% 0.33% 0.19% 1.22% 0.53%
u0 5.57% 6.49% 9.81% 5.85% 6.00%
v0 0.11% 0.76% 3.15% -11.7% -3.56%

Table B.1.: Recovery of the intrinsic parameters that appear in the Kc matrix of Equation B.1.
We express the differences between those estimated using the first and the second
set of sequences as a percentage. In both cases, we used 200 homographies. The
percentages for the focal lengths are very small. Those corresponding to the principal
points are a bit larger, which is not surprising given the fact that they are known to
have much less influence on the projection matrix.

B.7. Calibration Accuracy

To test the accuracy of the camera parameters that our system recovers, we first trained a classi-
fier to recognize the interest points of the pattern of Figure B.2(a), as discussed in Appendix A.
We then used a 5 cameras setup to record two different sets of video sequences by waving the
pattern in front of the cameras. Finally, we performed the calibration independently for each set.
Fig B.7 shows a typical frame with the detected pattern draw as a wireframe box.
Figure B.6(a) depicts the focal lengths recovered using the first set of sequences. They are

shown as a function of the total number of homographies retained to perform the computation.
When this number climbs above 140, the estimates become quite stable. It therefore does not
make sense to use many more since the computational cost increases almost linearly with this
number, as shown in Figure B.6(b).
In Figure B.6(c) and Table B.1 we compare the results obtained independently using the two

sets of video sequences. In Figure B.6(c), we superpose the focal length estimates, again drawn
as a function of the total number of homographies retained. As before, once we use more than
140, the two estimates become very close. This is a very good indication that they are accurate
since they were computed independently. As shown by Table B.1, this is true not only for the
focal lengths but also for the principal point locations.
We have not obtained ground truth for the external camera parameters. However, the virtual

object appears to be very stable with respect to the calibration pattern, which would not be the
case if they were poorly recovered.

B.8. Internal Parameters from a Set of Homographies

The computation of internal parameters from a set of homographies is quite standard [104, 121],
but we give it here for the sake of completeness. First, we write the matrix of internal parameters
as

K =





τf 0 u0

0 f v0

0 0 1



 ,
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Figure B.6.: Geometric calibration of 5 cameras. (a) Focal lengths estimated for each camera
as a function of the total number of homographies retained. The values stabilize
once enough homographies are used. (b) The computational cost grows linearly
as a function of the number of homographies. (c) Focal length of the second of 5
calibrated cameras computed independently using two different sets of sequences.
Once enough homographies are used, the estimates become very close.
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B. Camera Calibration

Figure B.7.: 3–D detection of a pattern using five calibrated cameras. All images are taken syn-
chronously. This frame is part of the calibration sequence used to obtain the results
of Fig B.6. The wireframe box shows that the 3–D calibration pattern reprojects
accurately on the five cameras.

where f represents the focal length, τ the aspect ratio, and (u0, v0)
⊤ the principal point. We

want to estimate K from a set of homographies that map points on a planar object to points on
captured images for different object positions.
We associate to each camera a projection matrix

P = K [R | t] , (B.4)

whereR is a 3 × 3 rotation matrix and t a translation vector. Without loss of generality, we can
choose Z = 0 as the plane of our calibration pattern. The relation betweenK,R, and t and the
homography H that maps a pointM = [X,Y, 0]⊤ of this plane to its corresponding 2–D point
m=[u, v]⊤ under perspective projection can be written as

[

m1
]

∝ P

[

M

1

]

= K [r1 r2 r3 t]









X
Y
0
1









= K [r1 r2 t]





X
Y
1



 , (B.5)

where r1, r2 and r3 respectively are the first, second and third column of the rotation matrixR,
and the symbol ∝ denotes proportionality. The homography projecting the plane Z = 0 to the
image plane is then: H ∝ K [r1 r2 t]. For convenience, we introduce a 3 × 3 matrix T with

T =





1 0 t′1
0 1 t′2
0 0 t′3



 ,
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B.8. Internal Parameters from a Set of Homographies

where t′ = R−1t = R⊤t that lets us write

H ∝ KRT . (B.6)

To find the relations between the coefficients of H and the internal parameters, let us now
compute the product H⊤ωH where ω is the matrix (KK⊤)−1, also known as the image of the
absolute conic. We have

H⊤ωH = H⊤K−⊤K−1H ∝ (KRT)⊤K−⊤K−1(KRT)

= T⊤R⊤K⊤K−⊤K−1KRT

= T⊤T =





1 0 −t′1
0 1 −t′2

−t′1 −t′2 ‖t′‖2



 .

By considering the expressions of the elements of the 2 × 2 sub-matrix on the top-left of the
T⊤T matrix, we obtain the two following equations:

{

h⊤1 ωh1 − h⊤2 ωh2 = 0
h⊤1 ωh2 = 0

, (B.7)

where hi represents the column i ofH. It follows that:

ω ∝





1 0 −u0

0 τ2 −τ2v0

−u0 −τ2v0 τ2f2 + u2
0 + τ2v2

0



 . (B.8)

By rearranging the terms of Equation B.7 and Equation B.8, we obtain the following linear
system in some of the coefficients of ω:

AW = h (B.9)

where

A =
[

2(h11h31 − h12h32) h2
21 − h2

22 2(h21h31 − h22h32) h2
31 − h2

32

h11h32 + h12h31 h22h21 h32h21 + h22h31 h32h31

]

W =









ω13

ω22

ω23

ω33









and h =

[

h2
11 − h2

12

h11h12

]

.

Each homography yields such a pair of equations. For each camera, this produces an over-
constrained system that we solve in the least-squares sense. The internal parameters u0, v0, f ,
and τ can then be estimated from ω13, ω22, ω23, and ω33. In our implementation, they are refined
by the final non-linear optimization.
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B.9. Displacement between a Camera and a Planar Object

from a Set of Homographies and the Internal Parameters

Once the internal camera parameters have been recovered from the whole sequence we can
recover the rotation R and the translation t between a particular pose of the planar object and
the camera as follows.
Recall from Equation B.6 that H ∝ KRT, where R and t are expressed in a coordinate

system attached to the planar object. Equivalently, we write:

RT ∝ K−1H .

Since the columns of R should have a norm equal to 1, the scale factor can be retrieved, and a
first estimation of these columns is obtained as:

r1 = K−1h1
‖K−1h1‖

, r2 = K−1h2
‖K−1h2‖

, r3 = r1 × r2 ,

where × denotes the cross-product of two vectors. Because the homographies are noisy, the
resulting rotation matrix is not orthonormal and we correct it using the procedure given in the
appendix of [121] which seeks the closest orthonormal matrix in the Frobenius sense using a
Singular Value Decomposition. Similarly the translation vector t can be approximated as:

t =
2K−1h3

‖K−1h1‖ + ‖K−1h2‖
.
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