
Virtually Augmenting Hundreds of Real Pictures:
An Approach based on Learning, Retrieval, and Tracking

Julien Pilet∗ Hideo Saito†

Keio University

ABSTRACT

Tracking is a major issue of virtual and augmented real-
ity applications. Single object tracking on monocular video
streams is fairly well understood. However, when it comes
to multiple objects, existing methods lack scalability and can
recognize only a limited number of objects. Thanks to recent
progress in feature matching, state-of-the-art image retrieval
techniques can deal with millions of images. However, these
methods do not focus on real-time video processing and can
not track retrieved objects.

In this paper, we present a method that combines the speed
and accuracy of tracking with the scalability of image re-
trieval. At the heart of our approach is a bi-layer clustering
process that allows our system to index and retrieve objects
based on tracks of features, thereby effectively summarizing
the information available on multiple video frames.

As a result, our system is able to track in real-time multiple
objects, recognized with low delay from a database of more
than 300 entries.

1 INTRODUCTION

Object tracking is an important issue for many applications,
especially in the domains of virtual, mixed, and augmented
reality. The base process to visually integrate virtual ele-
ments on real ones is the following: A camera captures a
scene. A registration technique provides the relative pose of
the camera with respect to the target object. A standard CG
method renders virtual contents from the appropriate point
of view and integrates it on the camera image. Examples of
such applications are numerous and include augmenting the
pages of a book, playing cards, and trading cards [20, 24, 23].
In these cases, as often, the camera is the only registration
device available.

Many methods have been proposed for visual registra-
tion [8]. However, when it comes to track multiple natu-
ral objects, they all have drawbacks. A classical approach
to track multiple objects is to detect a part common to all
objects, typically a highly contrasted square, and use the
registration to ease searching the characteristic area in the

∗e-mail:julien@hvrl.ics.keio.ac.jp
†e-mail:saito@hvrl.ics.keio.ac.jp

database. However, the necessity of marking target objects
severely restricts the application domain of such tracking ap-
proaches. Recently, wide-baseline point matching has been
demonstrated to effectively detect and track naturally tex-
tured objects [15, 25]. However, when multiple objects are
to be recognized, these approaches try to match each known
object in turn. Such a linear complexity, both in computa-
tion and memory requirements, limits the number of known
targets to a few objects [16].

Scalability is addressed by image retrieval approaches.
These methods can deal with millions of images [13]. How-
ever, they focus on static images and are not designed for
real-time tracking.

In this paper, we propose a real-time tracking method that
integrates image retrieval techniques to achieve both accu-
rate tracking and scalability with respect to the number of
target objects. More specifically, we exploit information
available in video stream, as well as the variability of feature
descriptors, to efficiently establish correspondences with, in-
dex, and retrieve target objects. As a result, our method can
augment more than 300 objects individually, as depicted by
Fig. 1.

To better describe the algorithmic contribution of our pa-
per, let us sketch a typical image retrieval system. The first
step is detection of features such as SIFT [10] or MSER [12],
to summarize an image with a set of vectors. These vectors
are quantized, turning features into visual words. Quanti-
zation involves clustering a large number of representative
features, forming a visual vocabulary. Once an image is ex-
pressed as a bag of word, it can be indexed and searched for
using information-retrieval techniques [13, 22]. However,
quantization errors combined with feature instability reduce
retrieval performances. A key contribution of our work is a
method that exploits quantization effects and the non-linear
variations of features to improve retrieval and to reach a com-
putation speed compatible with real-time tracking.

Our method observes the variability of descriptors over
several frames, by tracking the keypoints from frame to
frame. Inspired by Ozuysal et al. [15], we capture during
a training phase the behavior of features. The collected data
allows our method to create a stabilized visual vocabulary.
At runtime, our system matches full point tracks, as opposed
to neighborhood obtained from a single frame, against train-
ing data. It yields a stable entry that can serve as index key.

At a higher level, our contribution is a multiple natural ob-

Figure 1: To produce this result, our system detects, identify,
and track the photographs visible on the input video stream.
Each picture is augmented with its corresponding virtual el-
ement, precisely registered. The stack of pictures visible on
this image contains about 300 images. Our system can rec-
ognize all of them. Users can also augment new objects by
simply showing them to the camera and clicking. Tracking
and augmentation starts right away.

ject tracking system designed to scale well with the number
of targets. Several of its properties make it perfectly suited
for augmented reality applications: It can process live video
stream, it can deal with a large number of target objects,
adding new targets to the database is perceptually immedi-
ate, initialization is fully automatic, and it is robust to view-
point changes, illumination effects, partial occlusion, and
other typical tracking hazards.

We demonstrate the effectiveness of our approach with a
toy application that can augment more than 300 pictures and
that allows users to interactively augment with virtual ele-
ments a large number of new objects.

2 RELATED WORK

Pixel level registration techniques nowadays reached matu-
rity [11, 1]. Their association with point selection meth-
ods to concentrate computation efforts on interesting pixels
forms the basis of many computer vision tasks such as ob-
ject tracking [5, 21]. Tracking requires initialization, which
remained an issue a few years ago. Because marker based
approaches such as ARToolkit did not suffer from this draw-
back, they quickly became popular in the augmented reality
community [7]. Among the many improved versions pro-
posed, ARTag, for example, can recognize 2002 different
markers [3].

In parallel, feature point methods grew powerful enough
to achieve wide-baseline matching. The most representative
of them is probably Lowe’s scale invariant feature transform
(SIFT [10]). Establishing correspondences between views
with strong differences in pose and illumination addresses

many issues, including tracking initialization. Lepetit et al.

proposed a real-time tracking by detection method [9]. More
information about model based tracking approaches can be
found in [8].

The success of wide baseline feature matching also
opened the way to large scale image retrieval [22, 14]. Using
vector quantization of descriptors, recent approaches effec-
tively retrieve images from databases containing more than a
million of images [13, 17, 6]. Interestingly, Philbin et al. [18]
note that quantizing several descriptions of the same physi-
cal point can be unstable. They tried to capture this insta-
bility by synthesizing affine and noisy deformations of im-
age patches, inspired a classification based approach to wide
baseline matching [9]. However, these attempts did not im-
prove recognition performance, maybe because of an inap-
propriate choice of image perturbation, as the authors ex-
plain. Following a similar goal, our method observes de-
scriptors tracked over several frames to mitigate the effect of
their variability.

Feature matching has also been used to detect and track
multiple 3D objects [16]. Recently, Wagner et al. proposed
a method implemented on mobile phones that guarantees a
minimum frame rate [26]. However, these methods are re-
stricted to a limited number of objects, typically under 10.
We focus on scaling the database size, while keeping a de-
tection delay compatible with tracking tasks.

3 METHOD

The primitives upon which our method is built are feature de-
tection and tracking. Keypoints1 are detected at each frame,
and matched between consecutive frames, using normalized
cross-correlation (NCC). When such a simple NCC fails to
find correspondences, the Lukas-Kanade (KLT) algorithm
tracks lost features [1]. As a result, we obtain stable tracks of
features, and a patch is extracted at every frame, as illustrated
by Fig. 2a.

During a first training phase, we collect many features
from a video stream. We cluster their descriptors with a re-
cursive K-mean tree, as suggested by Nister et al. [13] and as
depicted by Fig. 2b. This allows us to summarize a descrip-
tor as the leaf it corresponds to or as an integer, since leaves
are numbered.

In a second training phase, we collect tracks of features.
The tree quantizes each descriptor, turning the feature tracks
into leaf tracks. We then compute for each track a histogram
of leaves. Because the training sequence contains effects
such as motion blur, perspective distortion, or moving spec-
ular reflections, the collected histograms capture the descrip-
tor’s instability, including the quantization effects of the tree,
in presence of such hazard. The set of collected histograms
form a dictionary, or a visual vocabulary. To reduce its am-
biguity, similar histograms are recursively merged until am-

1In this text, we define a keypoint as a location of interest on an image, a
descriptor as a vector describing a keypoint neighborhood, and a feature as
a keypoint and its descriptor.

(a) (b) (c) (d)

Figure 2: Computing visual words by tracking features. (a) Features are tracked across frames, and patches are collected.
(b) Patches pass through a tree and distribute over its leaves, forming a histogram. (c) The histogram is compared to the ones
observed during the training phase. We use them as visual words, and visualize them with geometric shapes. In this example,
the histogram matches a word represented with a star. (d) Some of the visual words detected on an input image.

biguity reaches an acceptable level.
At run-time, the whole history of each tracked feature is

summarized by the most relevant histogram found in the dic-
tionary. Each descriptor passes through the tree and ends
up in a leaf, forming a histogram of leaves, as depicted by
Fig. 2b. We then simply search for the most similar trained
histogram (Fig. 2c). The advantage of this technique is dou-
ble: It allows the algorithm to exploit both the variability of
descriptors, which is usually viewed as a problem, and the
large amount of data collected by tracking points over multi-
ple frames. Fig. 2d shows an image and some of its detected
features, with their associated histograms, represented as ge-
ometric shapes.

Indexing and retrieval follows a standard TF-IDF weight-
ing scheme on a bag of word model. In simpler words, a table
maps dictionary’s entries to indexed objects. For retrieval,
the table is looked up to collect all the frames in which the
visual words of the query appear. The candidates are then
ranked using an appropriate criterion.

The few best results are selected as candidates for geomet-
ric verification. If an object is successfully detected, matches
are propagated to the next frame using motion flow estima-
tion. Currently tracked objects are automatically appended
to the list of candidates for next frame’s geometric verifi-
cation stage. Because we eliminate outliers during detec-
tion and propagate matches, few outliers remain on the next
frame. Geometric verification therefore becomes simpler.

The remaining of this section details our system’s compo-
nents.

3.1 Low-Level: Repeatable Sparse Motion Flow
Our method relies on a particular type of motion flow esti-
mation in which the tracked points are detected in a repeat-
able way. It means that a point that has previously been
tracked is supposed to be tracked again when viewed from

another angle. Stability and repeatability are the main goals
of well known feature detectors such as SIFT, SURF, or
FAST [10, 2, 19]. In our experiments, we used a GPU im-
plementation of SIFT [27].

To compute the motion flow from frame to frame, we first
detect the keypoints in both frames. We then compare their
local neighborhoods using NCC. This quickly provides the
flow of most features. However, when the feature detector
detects a point on the first frame but fails to detect it on the
following one, the KLT algorithm searches its new location.
The decision to turn to KLT is taken when the best found
correlation drops below a threshold.

The result of this process is a set of stable tracks. The KLT
tracking mitigates the feature detector’s failures, while the
feature detector ensures repeatability and prevents the KLT
tracker from drifting. In our experiments, this approach can
track efficiently hundreds of points over hundreds of frames.

3.2 Describing tracked Keypoints
At this stage, our goal is to index target objects and to re-
trieve the ones visible on the current frame, relying on stable
feature tracks. To do so, we aim at constructing a dictionary
mapping feature tracks to indexed objects. Our approach has
two stages of clustering: at descriptor level and at track level.

3.3 K-mean Tree
The descriptors extracted during the training sequence are
clustered using a recursive K-mean, as proposed by [13].
The distance measure used is the L

2 norm. Each node has
at most 4 children, and recursion stops either at depth 8 or
when fewer than 64 descriptors are found in this cluster.

3.4 Learning and Exploiting Feature Variability
Our system tracks points and assigns them to a leaf of the re-
cursive K-mean tree, making it possible to observe groups of

leaves showing the same physical point. During the second
training stage, such groups are collected from a video se-
quence and accumulated into histograms. Such histograms
can capture the descriptor’s non-linear variability, that might
be caused by viewpoint, illumination, or noise effects.

Straightforward usage of these histograms as index keys
is not possible due to the many redundant elements collected
during training. We address this ambiguity issue with a sec-
ond clustering stage. If two histograms are too difficult to
discriminate, they are merged, creating a new, larger his-
togram. In practice, we compute the dot product between
two normalized histograms and use agglomerative cluster-
ing. We recursively merge the histogram pair with the high-
est normalized dot product, and stop when it is lower than a
threshold (typically 0.1, see Sec. 4). Merging two histograms
a and b into a new histogram x gives: x(l) = a(l) + b(l),
where a(l) is the number of times leaf l appears in a. At the
end of this process, the remaining histograms form a stable
visual vocabulary.

3.5 Feature Tracks as Index Keys
We build an inverted table mapping leaves of the recursive K-
mean tree to trained histograms. Given one or several leaves
observed when tracking a point, it becomes possible to effi-
ciently fetch the most similar learned histogram. By doing
so, our system assigns an index key to a point track, as op-
posed to a single feature. The following equation defines the
score of the histogram h for the track t:

s(t,h) =
1

∑l t(l)
1

∑l h(l) ∑
l

t(l)h(l)idf(l) , (1)

where t(l) (respectively h(l)) is the number of features as-
signed to leaf l in the track t (respectively in the trained his-
togram h). The term idf(l) = − log

�
f (l)
F

�
, where f (l) de-

notes the number of trained histograms involving leaf l, and
F the total number of trained histograms. This score gives
more importance to rare and discriminative leaves and de-
creases the weight of frequent ones.

The complexity of directly computing this score grows lin-
early with the track size. Therefore, we remember for each
track the scores of potential matching histograms. When a
new frame is available, the scores are updated regarding only
the newly observed leaf. This incremental approach allows
our system to efficiently exploit long tracks.

Soft visual word assignment, as suggested by Philbin et

al. [18], can easily be achieved by considering not only the
histogram with the highest score, but also the ones at least
90% as good.

3.6 Object Detection
To detect target objects entering the field of view, the
database is queried with all point tracks visible on the cur-
rent frame. As explained, each point track is assigned to a
visual word. The histogram of the observed visual words in

a frame forms a query q. The score of stored object d for the
query q is:

s(q,d) =
1

∑w q(w)
1

∑w d(w) ∑
w

q(w)d(w)id f (w) , (2)

where q(w) (respectively d(w)) is the number of words w

in q (respectively in d), and id f (w) the negative log of the
proportion of the stored frames that contain the visual word
w. The few objects with the best scores are kept as candidates
for geometric verification.

From a computational point of view, we reduced the com-
plexity of repeating this algorithm at each frame using incre-
mental queries. We keep the scores of objects found in the
previous frame, and update them with features that appeared
or disappeared. The complexity of the query therefore de-
pends on the number of feature addition or subtraction rather
than the total number of features present on the current view.

3.7 Geometric Verification
Our algorithm builds a list of candidates for geometric veri-
fication. It is initialized with the set of objects successfully
tracked on the previous frame. Then, the list is extended with
at most three other candidates selected by their query score
(Eq. 2).

For each object in the list, our system tries to match object
and frame features. If the candidate was not detected on pre-
vious frame, correspondences are established based on the
tracks index values (Sec. 3.5). Otherwise, correspondences
are propagated from previous frame. The system also at-
tempt to establish new correspondences with the object, but
it uses for geometric verification at most 20% of new corre-
spondences. Doing so controls the ratio of outliers.

Once the set of potential correspondences is created, the
geometry consistency is verified. Each object has a geo-
metric model, in our implementation either homography or
epipolar constraints. For detection, the RANSAC [4] algo-
rithm handles the potentially high outlier rate. During track-
ing, the outlier rate is controlled, and the least median of
squares (LMedS) algorithm can replace RANSAC.

4 RESULTS

We present in this section the experiments we conducted to
evaluate our system. We focused on retrieval and tracking
capabilities. We finally present a toy application demonstrat-
ing that our system fits augmented reality requirements.

4.1 Retrieval Evaluation
The goal of this experiment is to evaluate our system’s ability
to retrieve objects visible in a video stream. To do so, we
ignore the geometric verification stage and concentrates on
the best ranked candidate returned by the query.

We differentiate two scenarios. If the time to enter the
objects in the database is not an issue, it is possible to in-
clude their views in the two clustering stages. This yields
good performance, at the cost of a longer and less flexible

Success/Direct Success/Stabilized
untrained 2240 2351 (+5.0%)

trained 2389 2497 (+4.5%)

Table 1: To evaluate performance, we count the number of
frames correctly retrieved for a test sequence. The rows cor-
respond to the scenarios described in Sec. 4.1. The column
Success/Direct contains results obtained without using our
method. The column Success/Stabilized presents the results
when using our approach. This table clearly shows that, for
both scenarios, our approach improves performance.

Figure 3: Pairs of query (left) and retrieved (right) images
that our approach made possible to retrieve. The direct tree
indexing approach failed to handle these frames, as opposed
to our method. In the untrained scenario, our method im-
proves the number of successfully retrieved frames of about
5%, as detailed by Sec. 4.1 and table 1. These three pairs
are selected among these 5%. In the case of the first row,
motion blur causes SIFT detector instability. In the second
case, specular reflections alter the object appearance. In the
third case, the perspective distortion and the moving specular
reflection perturb retrieval if no tracking information is used.

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

S
u

cc
es

s
ra

te

Dot product threshold

Our method
Direct K-mean tree

Figure 4: Changing the threshold that stops histogram merg-
ing during the second clustering phase. If the threshold is
chosen above 0.06, our method improves retrieval rate by 4%
to 6%. This graph was obtained in the untrained scenario, as
described in Sec. 4.1.

procedure to add the objects to the database. Because some
applications can not tolerate such a long process, we tested
our method with and without including the target objects in
the learning data. We call the tested scenarios trained and
untrained.

Evaluation was conducted on video sequences showing 13
test objects, three of which are depicted by Fig 3. The im-
age resolution used is 640× 480. The first sequence does
not show the test objects. It is used to build the visual vo-
cabulary. The second sequence shows the objects in turn.
Thirteen frames are manually added to the database. The
third sequence is a test sequence. It also shows the objects,
at most one at a time. Ground truth reference is obtained by
manually noting the object visible on each frame. To test a
scenario, we use every frame of the test sequence as a query
to the database. We count the number of frames in which the
first result matches the ground truth.

In the trained scenario, the visual vocabulary is built us-
ing both the first and the second sequences. It implies that
the resulting K-mean tree is more complete. The untrained
scenario does not use the second sequence for building the
visual vocabulary. In this case, the system has to deal with
previously unseen features.

Each scenario is tested twice. Once using directly the
leaves of the K-mean tree as index keys, and once using our
approach.

Table 1 presents the evaluation results. In both scenarios,
our method improves retrieval. The results obtained in the
trained scenario show that even when quantization errors are
avoided by using the target objects to create the visual vocab-
ulary, our method can still learn some remaining variability
and provide a performance gain of about 4.5%.

Figure 5: Tracking photographs on a desk. The frames are selected from a test sequence in which the user moves a camera
above a desk on which lies several tens of photographs. The system recognizes and track the pictures when they enter the field
of view. The white grid represent the detected homography. The darker marks show the newly established correspondences,
and the brighter marks the ones propagated from previous frame. The shape of the marks are unique to each object.

(a) (b) (c)

Figure 6: Cases of failure. The system fails to handle these images, due to the specific nature of the texture (a), low contrast
due to atmospheric effects (b and c), and poorly discriminative texture (b and c). In total, only 10 pictures out of the 325 ones
can not be detected effectively. Half of them are not recognized at all, while the three others are detected only on unoccluded,
sharp, and frontal views.

4.2 Tracking Objects

For this experiment, we printed 325 photographs. We en-
tered the pictures one by one into the system, by capturing
them on a uniform background with a handheld video cam-
era. It is important to note that once the learning stage is
done, adding a new picture to the system is perceptually in-
stantaneous. The user points the target to the camera, clicks,
and tracking can start.

Based on the populated database, the system is able to rec-
ognize and track randomly chosen pictures. The recognition
delay is short, typically 2-3 frames. Once detected, the pho-
tographs are tracked, subject to neither drift nor jittering, as
depicted by Fig 5.

During the training stage, we transformed 125 pictures
in their digital form with random homographies to gener-
ate synthetic views, out of which about 5 million features
were extracted. We recursively applied K-mean clustering
with K = 4, stopping at a maximum depth of 8 or when less
than 32 descriptors remained in a branch. The resulting tree
has 85434 nodes, 63955 of which are leafs. During the sec-
ond training phase, 655970 histograms were extracted from

new synthesized views. The agglomerative clustering pro-
cess produced 39749 histograms.

The tree and cluster set produced during training allow
our system to efficiently establish correspondences between
an input view and the objects stored in the database. It is in-
teresting to observe that the system can deal with objects that
have not been used for training. We verified this behavior by
populating the database with 200 unseen objects, in addition
to the 125 ones used for training. Our system kept its perfor-
mance and could successfully detect and track almost all of
the 325 targets, except a few.

Out of 325 pictures, the system fails to detect only 10: 6
among the learned 125 image set, and 4 among the 200 other
ones. A few of these pathological pictures are illustrated by
Fig. 6.

In our experiments, the database contains 70185 keypoints
distributed over 325 pictures. Objects have typically 100 to
300 features each, as depicted by Fig 7.

Fig. 8 depicts the ambiguity of keypoints. The histogram
shows that, within our database, most of the keypoints have
a quantized appearance that occurs only a few times. There-

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500

N
u
m
b
e
r

o
f

o
b
j
e
c
t
s

Number of keypoints

Figure 7: This histogram shows how many features are de-
tected on indexed pictures.

fore, they provide a strong support to the retrieval process.
However, Fig. 8 also shows that a few descriptors appear
very often. These points are less discriminative but can still
bring information for registration.

4.3 Application to Augmented Reality
To demonstrate our system’s suitability to AR applications,
we used it to augment pictures with virtual drawings. The
database of target objects contains the 325 photographs men-
tioned in the previous section. When the system recognizes
a known picture, it overlays it with its virtual counterpart
warped with the appropriate homography.

As depicted by Fig. 9, our method’s stable tracking yields
convincing augmented reality, despite hazards such as view-
point changes, illumination changes, partial occlusion, cam-
era defocus, and specular reflection. The frames of figures 9
and 10 were produced directly and in real-time by our system
fed with a live video stream (except cropping).

As illustrated by Fig. 10, when several photographs ap-
pear in the field of view, our system augments them as long
as they appear large enough on the input image. Since an
homography is computed for each target picture, the system
can augment them even if they move independently.

The frame rate of our system is typically 6-8 frames per
second. The computationally heaviest component in our im-
plementation is the SIFT feature detector, despite its imple-
mentation on GPU.

5 CONCLUSION

In this paper, we presented an image retrieval approach to
multiple object tracking. We demonstrated its effectiveness
and scalability by running experiments on more than 300
target objects. Our system is user friendly because it is re-
sponsive and fully automated. For example, augmenting a
new object simply amounts to pointing the camera at it and
clicking. The augmentation starts immediately, and further

 1

 10

 100

 1000

 10000

 0 50 100 150 200

N
b

o
f

i
n
d
e
x
e
d

f
e
a
t
u
r
e
s

Ambiguity of indexed keys

Figure 8: This histogram shows the ambiguity of the index
dictionary. Most features are assigned to a unique index key.
There is a small number of ambiguous features that appear
very often. Because the number of index features ranges
from 1 to 11213, we chose a logarithmic scale.

detection is 100% automatic. Our system can process live
video streams, and is robust to partial occlusion, viewpoint
changes, illumination effects, and other hazards.

These properties make our approach ideal for augmented
reality applications that overlay virtual elements on real ob-
jects. Possible applications include: Animating pages of
books, tagging virtual messages on real walls, virtually anno-
tating objects for maintenance tasks, augmenting card games
with virtual scenes, and augmenting panorama views with
landmark names.

In future work, we aim to reduce our system’s dependency
on texture. Currently, only very textured objects can be de-
tected easily. Taking into account the geometric relationship
of keypoints could extend indexing and retrieval to printed
text or uniform objects with a specific 3-D shape, such as a
chair or a tripod.

REFERENCES
[1] S. Baker and I. Matthews. Lucas-kanade 20 years on: A unifying framework.

International Journal of Computer Vision, pages 221–255, March 2004.
[2] H. Bay, T. Tuytelaars, and L. V. Gool. SURF: Speeded up robust features. In

European Conference on Computer Vision, 2006.
[3] M. Fiala. ARTag, a fiducial marker system using digital techniques. In Confer-

ence on Computer Vision and Pattern Recognition, pages 590–596, 2005.
[4] M. Fischler and R. Bolles. Random Sample Consensus: A Paradigm for Model

Fitting with Applications to Image Analysis and Automated Cartography. Com-

munications ACM, 24(6):381–395, 1981.
[5] C. Harris and M. Stephens. A Combined Corner and Edge Detector. In Fourth

Alvey Vision Conference, Manchester, 1988.
[6] H. Jégou, M. Douze, and C. Schmid. Hamming embedding and weak geometric

consistency for large scale image search. In European Conference on Computer

Vision, volume I of LNCS, pages 304–317, oct 2008.
[7] H. Kato, M. Billinghurst, I. Poupyrev, K. Imamoto, and K. Tachibana. Virtual

Object Manipulation on a Table-Top AR Environment. In International Sympo-

sium on Augmented Reality, pages 111–119, 2000.
[8] V. Lepetit and P. Fua. Monocular model-based 3d tracking of rigid objects: A

survey. Foundations and Trends in Computer Graphics and Vision, 1(1):1–89,
October 2005.

[9] V. Lepetit, J. Pilet, and P. Fua. Point matching as a classification problem for
fast and robust object pose estimation. In Conference on Computer Vision and

Pattern Recognition, Washington, DC, June 2004.
[10] D. Lowe. Distinctive image features from scale-invariant keypoints. Interna-

tional Journal of Computer Vision, 20(2):91–110, 2004.
[11] B. Lucas and T. Kanade. An Iterative Image Registration Technique with an

Application to Stereo Vision. In International Joint Conference on Artificial

Intelligence, pages 674–679, 1981.

Figure 9: In these frames selected from a longer sequence, our system automatically augments the picture with a virtual hole
through which a hand passes. The virtual hand appears stable on the moving photograph, despite illumination changes, partial
occlusion, camera defocus, and specular reflection.

Figure 10: Augmenting multiple objects simultaneously. Our system retrieves, track, and augment the pictures lying on the
desk. On the first row, all the objects are augmented with the same virtual content. On the second row, the virtual elements vary
from object to object. In these examples, 3 to 6 pictures are tracked and augmented simultaneously.

[12] J. Matas, O. Chum, U. Martin, and T. Pajdla. Robust Wide Baseline Stereo from
Maximally Stable Extremal Regions. In British Machine Vision Conference,
pages 384–393, London, UK, September 2002.

[13] D. Nister and H. Stewenius. Scalable recognition with a vocabulary tree. In
Conference on Computer Vision and Pattern Recognition, 2006.

[14] Š. Obdržálek and J. Matas. Sub-linear indexing for large scale object recognition.
In British Machine Vision Conference, 2005.

[15] M. Ozuysal, P. Fua, and V. Lepetit. Fast Keypoint Recognition in Ten Lines of
Code. In Conference on Computer Vision and Pattern Recognition, Minneapolis,
MI, June 2007.

[16] Y. Park, V. Lepetit, and W. Woo. Multiple 3d object tracking for augmented
reality. In International Symposium on Mixed and Augmented Reality, pages
117–120, 2008.

[17] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with
large vocabularies and fast spatial matching. In Conference on Computer Vision

and Pattern Recognition, 2007.
[18] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Lost in quantization:

Improving particular object retrieval in large scale image databases. In Confer-

ence on Computer Vision and Pattern Recognition, 2008.
[19] E. Rosten and T. Drummond. Machine learning for high-speed corner detection.

In European Conference on Computer Vision, 2006.
[20] C. Scherrer, J. Pilet, V. Lepetit, and P. Fua. Souvenirs du monde des montagnes.

Leonardo, special issue on ACM SIGGRAPH, 42(4):350–355, 2009.
[21] J. Shi and C. Tomasi. Good features to track. In Conference on Computer Vision

and Pattern Recognition, Seattle, June 1994.
[22] J. Sivic and A. Zisserman. Video Google: A text retrieval approach to object

matching in videos. In Proceedings of the International Conference on Computer

Vision, volume 2, pages 1470–1477, Oct. 2003.
[23] Sony Computer Entertainment. The eye of judgment, 2007.
[24] Total Immersion. Topps 3d live baseball cards, 2008.
[25] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and D. Schmalstieg. Pose

Tracking from Natural Features on Mobile Phones. In International Symposium

on Mixed and Augmented Reality, Cambridge, UK, Sept. 2008.
[26] D. Wagner, D. Schmalstieg, and H. Bischof. Multiple target detection and track-

ing with guaranted framerates on mobile phones. In International Symposium on

Mixed and Augmented Reality, Orlando, USA, 2009.
[27] C. Wu. A GPU implementation of David Lowe’s scale invariant feature trans-

form, 2008.

	Introduction
	Related Work
	Method
	Low-Level: Repeatable Sparse Motion Flow
	Describing tracked Keypoints
	K-mean Tree
	Learning and Exploiting Feature Variability
	Feature Tracks as Index Keys
	Object Detection
	Geometric Verification

	Results
	Retrieval Evaluation
	Tracking Objects
	Application to Augmented Reality

	Conclusion

