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ABSTRACT In this paper, we propose a framework for 3D human pose estimation using a single 360◦

camera mounted on the user’s wrist. Perceiving a 3D human pose with such a simple setup has remarkable
potential for various applications (e.g., daily-living activity monitoring, motion analysis for sports training).
However, no existing method has tackled this task due to the difficulty of estimating a human pose from a
single camera image in which only a part of the human body is captured, and because of a lack of training
data. We propose a method for translating wrist-mounted 360◦ camera images into 3D human poses. Since
we are the first to try this task, we cannot use existing datasets. To address this issue, we use synthetic data
to build our own dataset. This solution, however, creates a different problem, that of a domain gap between
synthetic data for training and real image data for inference. To resolve this problem, we propose silhouette-
based synthetic data generation created for this task. Extensive experiments comparing our method with
several baseline methods demonstrated the effectiveness of our silhouette-based pose estimation approach.

INDEX TERMS 3D human pose estimation, domain adaptation, 360◦ camera, data synthesis, silhouette.

I. INTRODUCTION
Human Pose Estimation (HPE) has long been studied in
the computer vision community [1], [2]. In particular, 3D
pose estimation using a monocular camera, which is one of
the most widely used visual sensors in the world, has been
actively studied [3] because of its usefulness in various fields
such as animation, virtual reality, healthcare, and sports.
In the past, many third-person perspective 3D human pose
estimation methods have been proposed that use an outside-
in arrangement of single or multiple cameras statically placed
around the user [4]–[7]. However, since the third-person
perspective method can only estimate the movements within
the range of vision of the externally placed camera, it is
often not practical in real-world situationswhere peoplemove
around in a large space.

In contrast, there are first-person perspective (also known
as ‘‘egocentric’’) 3D human pose estimation methods
[8]–[16], in which cameras or inertial measurement
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units (IMUs) are attached to the body. These can obtain 3D
pose data in various activities in the real world due to their
mobility and flexibility, enabling new applications such as
motion recognition and performance analysis in the fields of
sports and healthcare. In egocentric human pose estimation,
it is important to minimize the number of devices in terms
of usability. For this reason, mainstream methods in recent
years have been inside-out methods [12], [17]–[20] in which
an outward-facing camera is attached to the body, and inside-
in methods [8], [13]–[15], [21]–[23] in which a camera with
a fisheye lens is attached to the body to capture the camera
wearer’s body with its wide field of view. However, thus far,
there is no method with a more practical camera setting, i.e.,
a single wrist-mounted camera that could be introduced in
smartwatches in the future (see Fig. 1-(a)).

Therefore, we propose a framework for estimating 3D
human poses from images taken with a single wrist-mounted
camera. This task is quite challenging as some human body
parts are hidden from the camera’s line of sight. We make
use of a single 360◦ camera and a neural network-based
framework that leverages time-series features to estimate a
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FIGURE 1. Concept of our 3D human pose estimation method using a single wrist-mounted 360◦ camera. (a) Future vision depicting a smartwatch with a
360-degree camera. The area shown in red represents the camera’s field of view (FOV); (b) camera view with a 360◦ camera (GoPro MAX) mounted on the
wrist, which is the camera configuration of our method; (c) 3D pose of the camera wearer estimated from (b) image by our 3D human pose estimation
framework.

3D human pose with only limited visual information (see
Fig. 1-(b), 1-(c), and Fig. 2). The difficulty is how to prepare
the training data; there is no existing dataset for 3D human
pose estimation with wrist-mounted cameras. Existing works
with body-mounted cameras that faced this issue tackled
it by using synthetic data [13]–[15], [20]–[23]. However,
training on synthetic datasets, which lack diversity in subject
appearance, lighting, or background variation, can inherently
cause domain gaps and restrict generalizability [24], [25].

To overcome these issues, we also describe a simplified
method for generating training data. In contrast to the
conventional approach of creating realistic and diverse
large-scale datasets, we propose an approach that bridges
the domain gap by using binary silhouette images for
both training and inference data. We train the network
using silhouette equirectangular image sequences generated
using only existing motion capture (MoCap) data. During
inference, the 3D poses are estimated from silhouette
equirectangular image sequences obtained by our proposed
silhouetting process from real images captured by the 360◦

camera. The proposed method for generating synthetic data
is quite simple and thus can be easily applied to any other
approach that uses varied camera positions or a different
number of cameras.

We validate our approach for egocentric pose estimation
on a large motion capture dataset and an in-the-wild dataset
consisting of various human motions (walking, crouching,
jumping, raising hands, and motion transitions). Experiments
comparing the accuracy of pose estimation with several dif-
ferent types of data show the effectiveness of our silhouette-
based approach. Experiments comparing the accuracy of pose
estimation and the acceleration of the output posewith several
different pose estimation models show that our model, which
utilizes time-series features, generates smooth and accurate
poses.

To summarize, our contributions are as follows:
• We are the first to propose a 3D human pose estimation
framework using a single wrist-mounted camera, which
contributes to many important applications.

• To bridge the domain gap between synthetic data
and real-world data, we describe a method of
silhouette-based human pose estimation. Our simplified
method of generating silhouette-based training data has
the potential to be used for other camera configurations.

• We provide extensive experiments and show the
effectiveness of our silhouette-based pose estimation
approach and the pose estimation model that leverages
time-series features.

• We build a training dataset, composed of 54K frames
of silhouette images, for our new problem set-
ting. We make it publicly available to promote
progress in the area of egocentric motion capture. The
dataset is available at http://hvrl.ics.keio.ac.jp/hori/ieee-
access/sil-hpe/index.html

A conference version of this paper exists [26]. This journal
version extends it by adding a new method for generat-
ing pseudo-silhouettes based on a conditional adversarial
network that improves our human pose estimation model.
In addition, this paper provides results from more extensive
experiments conducted by adding the number of subjects in
the dataset, baseline methods, and evaluation metrics.

II. RELATED WORK
A. 3D HUMAN POSE ESTIMATION
Vision-based 3D human pose estimation tasks have been
developed for decades [1]–[3] because of their potential
applications in many fields such as animation, virtual reality,
healthcare, and sports. The well-known commercial products
for 3D HPE are Vicon [27] with optical sensors and Captury
[28] with multiple cameras. However, they only work in
a limited space captured with multiple camera sensors or
require special markers to be attached to the human body.
Therefore, 3D HPE methods using monocular cameras,
which are the most widely used visual sensors, have been
actively studied to obtain human pose data in more diverse
real-world scenarios. They can be classified into two types
based on the positional relationship between the cameras
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and the human body: third-person perspective methods and
egocentric methods.

Third-person perspective 3D HPE is a method of estimat-
ing human poses from images or videos using the outside-
in arrangement, i.e., one or more cameras are placed around
the person. In recent years, many pose estimation methods
using deep learning networks have been proposed [4],
[6], [29]–[33]. Although these methods have made it
possible to apply them in various real-world situations,
they still have a limitation in that the user can only move
within the field of view of the externally placed cameras.
Therefore, they are not practical in environments where
people move around in a large space or are occluded by
objects.

On the other hand, egocentric 3D HPE is a method for
estimating poses using body-mounted cameras, without the
need for external cameras. Due to its mobility and flexibility,
the egocentric method can obtain 3D pose data in various
real-world activities, enabling new applications in fields such
as sports, animation, and healthcare. We tackled this task in
the hardware configuration of a wrist-mounted 360◦ camera.
The related egocentric methods are presented in the following
subsection (Sec. II-B).

B. EGOCENTRIC HUMAN POSE ESTIMATION
In early research, the egocentric HPEmethods were proposed
for human activity recognition, with most of them [34]–[37]
detecting only the upper body. Estimating the whole body in
an egocentric setting is a more challenging task, and many
researchers have dealt with this challenge through various
approaches as follows:

1) POSE ESTIMATION USING MULTIPLE SENSOR DEVICES
In early work, Shiratori et al. [38] reconstructed human
poses by attaching 16 cameras to the limbs and torso of a
subject and performing Structure from Motion (SfM) of
the environment. Rhodin et al. [8] pioneered the use of
top-down view cameras for full-body pose estimation and
achieved egocentric markerless motion capture with two
helmet-mounted fisheye cameras. Cha et al. [10] proposed
a method to capture the user’s body pose, facial expression,
and surrounding environment frommultiple cameras attached
to the user’s glasses, assuming that they will be integrated
into AR glasses in the future. Later, Cha et al. [11] also
proposed a standalone real-time system that dynamically
captures a person in 3D using only multiple head-mounted
cameras and IMUs worn on the wrist and ankle. Recently,
Guzov et al. [16] combined accurate pose estimation using
IMUs with camera localization using a head-mounted first-
person view camera to estimate the user’s global position
and posture in a large-scale 3D space. However, the setup of
these methods is technically expensive, as it requires tedious
pre-calibration or pose optimization throughout the sequence.
We adopt a method that uses a single camera, which is
superior in this respect.

2) POSE ESTIMATION USING A SINGLE CAMERA
There are many studies that have taken on the more difficult
task of whole-body pose estimation using only one camera,
such as an inside-out configuration where the body is almost
invisible to the camera [12], [17]–[20], or a configuration
where a wide-angle camera is attached to capture the whole
body [13]–[15], [21]–[23].

Jiang and Grauman [17] estimate full-body pose by
leveraging both learned dynamic and scene classifiers and
pose coupling over a long time. Yuan and Kitani [12],
[18] proposed DeepRL-based methods for estimating and
forecasting both accurate and physically plausible 3D ego-
pose sequences without observing the camera wearer’s body.
Ng et al. [19] estimate the camera wearer’s 3D body pose
from egocentric video sequences by leveraging the pose of
the interacting person. Jiang and Ithapu [20] tackled the
egopose estimation from a natural human vision span by
taking advantage of both the dynamic features from visual
simultaneous localization and mapping (SLAM) and body
shape imagery.

Xu et al. [13] proposed the first real-time 3D pose
estimation system using a single egocentric fisheye lens
camera mounted on a cap. In the same camera position,
Hu et al. [15] synthesize free-viewpoint avatars, through
a rendering process that includes texture synthesis, pose
construction, and neural image translation. Tome et al. [14],
[21] presented a method for full-body pose estimation from
monocular images captured from a downward-looking fish-
eye camera installed on a Head Mount Display (HMD).
Hwang et al. [23] proposed a multimodal human motion
capture system that estimates 3D body posture, head posture,
and camera posture in real-time using a single RGB camera
with an ultra-wide-angle fisheye lens mounted on the chest.
Wang et al. [22] estimate temporally stable global 3D
human poses from a single head-mounted fisheye camera by
leveraging the 2D and 3D keypoints from CNN detection as
well as VAE-based motion priors.

Thus far, these existing methods mount the camera on
the user’s head or chest. This paper explores the potential
for another camera setting for user-mounted cameras, i.e.,
a single wrist-mounted camera that is considered more
practical because it could be introduced in smartwatches in
the future.

C. DATA SYNTHESIS FOR EGOCENTRIC HUMAN POSE
ESTIMATION
In learning-based methods, it is important to collect a large
amount of pose data for training in order to estimate various
poses. Since existing datasets consisting of third-person
perspective images cannot be used for egocentric HPE using
a fisheye camera, it is necessary to create a unique dataset.
However, capturing a large amount of annotated 3D pose
data is a huge task, and manual labeling in 3D space is
impractical. To address this difficulty, Rhodin et al. [8]
proposed markerless multi-view motion capture with an
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FIGURE 2. Overview of our 3D pose estimation method using a single wrist-mounted 360◦ camera. The network extracts time-series features from
a silhouette image sequence and predicts a 3D human pose sequence. The input data for the network during training is a synthetic silhouette
image sequence generated by animating a humanoid using MoCap data as described in Sec. III-B. During inference, the input is a silhouette image
sequence obtained by our silhouetting process from equirectangular images captured by a 360◦ camera in a real environment, as described in
Sec. III-C.

external camera to acquire 3D annotations. In recent years,
to further reduce the effort required for data annotation,
some existing methods have generated synthetic data to
build the training dataset [13]–[15], [20]–[23]. However,
training on synthetic datasets, which lack diversity and
photorealism in subject appearance, lighting, and background
variation, can inherently cause domain gaps and restrict
generalizability [24], [25]. Therefore, it is necessary to
build a large dataset with maximum diversity in motion
and appearance and minimal differences between synthetic
images and real images.

Xu et al. [13] created the Mo2Cap2 dataset, which
consists of a total of 530K images rendering the SMPL
body model [39] characters animated using 3K different
motions from the CMU MoCap dataset [40]. The images
were created using more than 700 body textures from the
SURREAL dataset [41] and more than 5,000 background
images taken indoors and outdoors with a fisheye camera
mounted on a long pole. Hu et al. [15] and Wang et al. [22]
also used this dataset. The xR-EgoPose Synthetic dataset
created by Tome et al. [14], [21] consists of 383K frames
of synthetic images generated using 23 male and 23 female
characters of various skin tones, clothing, and motions.
To maximize the photorealism of the synthetic dataset, they
animated the characters in Maya [42] using actual mocap
data [43], and used a standardized physically based rendering
setup with V-Ray. Hwang et al. [23] created a composite
dataset of 680K frames. They used the SMPL models to
create humanoid models of two males and two females
with various body shapes and appearances, and animated
the models using the CMU MoCap dataset. The clothing
textures were randomly selected and rendered from the
SURREAL dataset, while the background textures were

sampled and applied to the omnidirectional images from the
SUN360 dataset [44]. Jiang et al. [20] generated images using
Blender [45] and the CMU MoCap dataset for a total of
approximately 10 hours. Randomly selected human meshes
from 190 different mesh models were applied to each MoCap
sequence, and the background was randomly used from the
ADE20K dataset [46].

In contrast to these approaches of building large datasets
of realistic and diverse synthetic images, we took on an
‘‘opposite’’ approach. We propose to use synthetic binary
silhouette images, inspired by the method of Xu et al. [47]
who used low-dimensional synthetic data to fill the domain
gap in pedestrian trajectory estimation. This silhouette image
can be easily generated from existing MoCap data (see
Sec. III-B) and is easily adaptable to changes in camera
position. As the data are fully silhouette-based, it reduces
the problem of domain gaps between synthetic data and real-
world data.

III. METHOD
As shown in Fig. 2, our goal is to estimate 3D human poses
z1:T from a real equirectangular image sequence V1:T by our
network described in Sec. III-A. The network is trained only
on synthetic silhouette data generated at a lower cost than
conventional methods by the method in Sec. III-B. During
inference, the silhouetting process presented in Sec. III-C is
applied to real equirectangular images to bridge the domain
gap between synthetic data and real-world data. As an
optional feature, we also propose a method for adding noise
to the synthetic training data to improve the robustness of the
model against noise caused by the silhouetting process and
the smoothness of the output pose during inference. Details
of this method are in Sec. III-D.
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FIGURE 3. Overview of training data synthesis. We animated a humanoid
avatar using MoCap data and captured equirectangular images with a
virtual 360◦ camera fixed at the avatar’s wrist position. To capture binary
silhouette images, we set the model’s body to white and the background
to black.

A. HUMAN POSE ESTIMATION NETWORK
Our network F takes the input of the silhouette equirectan-
gular image sequence S1:T and predicts the humanoid state
z1:T at each frame, as shown in Fig. 2. The humanoid state zt
consists of the pose pt (position and orientation of the root,
and joint angles) and velocity vt (linear and angular velocities
of the root, and joint velocities). Since human motion is
temporally continuous and smooth, the change in poses in
nearby past and future frames can be utilized to estimate
human poses from images. Therefore, the network extracts
image-by-image features from given sequential images and
estimates 3D human poses based on their temporal context.
This network is based on Yuan and Kitani’s work [12]. The
use of time-series features enables smoother andmore natural
motion estimation than image-by-image pose estimation.

Themodel encodes the silhouette image by ResNet-18 [48]
to extract the feature vector ψ1:T ∈ R128 and feeds it
to Bidirectional Long-Short Term Memory (BiLSTM) to
generate the visual context φ1:T ∈ R128 for each frame.
We then feed it to the Multilayer Perceptrons (MLPs)
and predict the humanoid state z1:T . The Mean Squared
Error (MSE) is used as the loss function:

L(ζ ) =
1
T

T∑
t=1

‖F(S1:T )t − ẑt‖2, (1)

where ζ is the parameter of this network F , and ẑt is the
ground-truth humanoid state. The optimalF∗ can be obtained
by an SGD-based method.

B. TRAINING DATA SYNTHESIS
Fig. 3 shows an overview of our process of generating an
equirectangular image sequence corresponding to theMoCap
data for training the network. In a virtual environment such
as one provided by Unity [49], we animate a humanoid
avatar by applying the MoCap data. A virtual camera with
a 360◦ field of view is fixed at the wrist of the avatar.
Since this virtual camera can be attached to any part of the
avatar’s body, ourmethod can be easily adapted to any camera
position, not only the wrist. By capturing images while

FIGURE 4. Our silhouetting process, which converts an equirectangular
image captured by a wrist-mounted 360◦ camera into a binary silhouette
image. We extract the silhouette of the camera wearer from the region
labeled as human, which is estimated by an existing semantic
segmentation model.

keeping them horizontal, we generate RGB equirectangular
images as shown in the upper right of Fig. 3.

To improve the performance of generalization on real
images during inference, conventional methods generated
a large amount of synthetic RGB image data using pho-
torealistic and diverse backgrounds and humanoid textures.
In contrast, our approach is to bridge the domain gap by
using binary silhouette images for both training and inference
data. To this end, we generate silhouetted equirectangular
images as shown in the lower right of Fig. 3, by setting the
background to black and the avatar’s body texture to white,
and capturing images with light shining from all directions.
By binarizing those output images and resizing them to the
input size of the network, we obtain a set of 3D poses and
equirectangular image sequences for training.

C. SILHOUETTING PROCESS FOR INFERENCE
We propose a silhouetting process for silhouette-based
pose estimation, which converts an equirectangular image
captured by a wrist-mounted 360◦ camera into a binary image
of a human silhouette. We extract the silhouette of the camera
wearer from the region labeled as human, which is estimated
by an existing learned semantic segmentation model. In this
study, we used the Swin Transformer [50] model trained on
the ADE20K [46] dataset, which is publicly available [51],
for semantic segmentation. Since this process only uses the
trained model of the semantic segmentation method, it can be
replaced by any existingmethod. The issue here is that images
taken with a 360◦ camera are highly distorted; the top and
bottom of the images are stretched out, which is very different
from normal-perspective view-images such as ADE20K.
Therefore, it is difficult to extract human silhouettes by
simply applying semantic segmentation. To solve this issue,
we apply semantic segmentation not only to the original
equirectangular images but also to the equirectangular images
shifted vertically. Then we merge the results of the semantic
segmentation to obtain the network input.
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FIGURE 5. Training the pix2pix model to map our synthetic silhouette
images with smooth contour to noisy silhouette images obtained through
our silhouetting process. The discriminator, D, learns to classify between
fake (synthesized by the generator) and real {smooth silhouette image,
noisy silhouette image} tuples. The generator, G, learns to fool the
discriminator.

Specifically, we first generate three equirectangular images
by shifting them horizontally (yaw axis) at 120◦ intervals.
Second, we generate two images by shifting each one
by ±30◦ vertically (pitch axis). Third, we apply semantic
segmentation to each image and shift them vertically back
to the equirectangular images of the original vertical angle.
Fourth, in each of the three horizontally shifted images,
we combine the three generated silhouette images via the
OR operation and shift them horizontally back to the same
position as the input image. Finally, we extract the largest
silhouette from the three images and resize it for the input
of the network.

D. PSEUDO-SILHOUETTE GENERATION FOR NOISE
ROBUSTNESS
As an optional feature, we also propose a method of adding
generated images of noisy silhouettes (hereafter, ‘‘pseudo-
silhouettes’’) to the training data to improve the robustness
of the model against silhouette noise during inference.
Although our silhouetting process aims to bridge the domain
gap between the synthetic training data and the real data
for inference by using silhouettes, it is still difficult to
completely bridge the gap. The synthetic training data in our
method are silhouette images with smooth contours, while
the silhouette of the input image during inference has a
rough contour (hereafter, ‘‘silhouette noise’’). The silhouette
noise is caused by applying semantic segmentation trained on
general perspective view images to equirectangular images
and is an inaccurate contour with some missing parts as in the
bottom image of Fig. 4, or some protruding parts as in the top
right image of Fig. 5. These differences between the training
data and test data affect the accuracy of pose estimation as a
domain gap.

Therefore, we improve the robustness of the model by
adding pseudo-silhouette images to the training data. The
pseudo-silhouette image is generated by converting the
smooth silhouette synthetic image to a noisy silhouette image
using the pix2pix [52] model, an image-to-image translation
method with conditional adversarial networks. The silhouette
noise can be reproduced by the pix2pix model trained
to transfer the synthetic silhouette image generated using
MoCap data to the silhouette image obtained from the real

FIGURE 6. Motion capture for constructing our MoCap Training and Test
Data. Subjects wore motion capture markers and the 360◦ camera as
shown in Fig. (a) and were asked to perform actions as shown in
Figs. (b)–(e).

image (see Fig. 5). By adding this pseudo-silhouette image
to the training data, even if the image sequence contains
silhouette noise during inference, it is less likely to be affected
by it, resulting in the estimation of more correct poses and
smoother motions.

IV. EXPERIMENT
A. DATASET
• MoCap Training and Test Data: We used OptiTrack
to capture the motion data to construct the dataset (see
Fig. 6). Four subjects each wore a 360◦ camera on their
wrist and were asked to perform a variety of actions
including walking, jumping, crouching, raising hands,
and transitioning between all of these motions. Each
take lasted about 5 min and a total of 9 takes were
captured, of which 7 takes were used as training data
and 2 takes as test data. After removing the parts of
inaccurate motions caused by motion capture failures,
the training data consists of 54K frames and the test data
consists of 14K frames.

• In-the-wild Data: We also collected in-the-wild data to
verify the effectiveness of our method in a real-world
environment. As in the previous MoCap training and
test data collection, the subject wore the 360◦ camera on
the wrist and was asked to perform a variety of actions.
This dataset consisted of 11 videos each lasting about
5 sec. As it is hard to obtain ground-truth 3D poses in a
real-world environment, followingYuan andKitani [12],
we captured side-view poses of the subject, which were
used for quantitative evaluation based on 2D keypoints.

B. IMPLEMENTATION DETAILS
The weights of ResNet-18 [48] used in our 3D human
pose regressor were pre-trained with ImageNet [53]. The
input equirectangular image was resized to 224 × 224. The
Adam [54] optimizer was employed at the learning rate of
1e − 4. When training this network, for each time step we
sampled data fragments in turn for 120 frames (4 sec) and
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padded 10 frames of visual featuresψt on both sides to reduce
the estimation error on the boundary frames when computing
φt . We used Unity for the virtual environment to generate the
training data and MuJoCo [55] to visualize estimated human
poses that consisted of 52 Degrees of Freedom (DoFs) and
19 rigid bodies.

The pix2pix model for generating the pseudo-silhouettes
was trained using our MoCap Training Data. The model
was trained to learn a translation from the silhouette image
generated by animating the avatar using the MoCap to
the silhouette image obtained from the real image by our
silhouette process. To align the position of the silhouettes
in the real and virtual images, we shifted these images so
that the Sum of Squared Differences (SSD) was minimized.
When training our pose estimation network, we added a
pseudo-silhouette image with a probability of one-fourth to
the image sequence selected with a probability of one-half at
each iteration.

C. EVALUATION METRIC
To evaluate the accuracy of the pose estimation and the
smoothness of the motion of our approach, we use the
following evaluation metrics. For the estimated and ground-
truth keypoints, we set the hip keypoint as the origin and
scaled the coordinate to make the height between the shoulder
and hip equal to 0.5 [m].
• Mean Per-Joint Position Error (EMPJPE): A pose-
based metric used by Isogawa et al. [56] that measures
the Euclidean distance between the estimated 3D pose
and the ground-truth 3D pose in mm. We use it for
evaluating the accuracy of pose estimation on MoCap
test data. This metric is defined as

EMPJPE =
1
TJ

T∑
t=1

J∑
j=1

‖(x jt − x
root
t )− (x̂ jt − x̂

root
t )‖2,

(2)

where x jt is the j-th joint position of the estimated pose,
and x̂ jt is the ground truth. xroott and x̂roott represent the
root joint position of the estimated and ground-truth
poses, respectively.

• 2D Keypoint Error (Ekey): A pose-based metric
proposed by Yuan and Kitani [12] that measures the
Euclidean distance between the estimated 2D pose and
the ground-truth 2D pose in mm.We use it for evaluating
the accuracy of posture estimation on the in-the-wild
data. The metric is defined as

Ekey =
1
TJ

T∑
t=1

J∑
j=1

‖yjt − ŷ
j
t‖2, (3)

where yjt is the j-th 2D keypoint of the estimated pose
obtained by projecting the 3D joints to an image plane
with a side-view camera, and ŷjt is the ground truth
extracted with OpenPose [57].

FIGURE 7. Examples of training and test data for each method in
experiment 1. We used the same silhouette images for training our
silhouette-based methods (SS, HRNet, and Swin).

• Acceleration Error (Eaccl): A metric proposed by
Kanazawa et al. [58] that measures the average differ-
ence between ground truth and predicted acceleration of
each joint in mm/s2. For the MoCap test data, we used
the original metric Eaccl3d for 3D poses, and for the in-
the-wild data, we used the metric Eaccl2d adapted to 2D
data. The metric is defined as

Eaccl =
1
TJ

T∑
t=1

J∑
j=1

‖ajt − â
j
t‖2, (4)

where ajt and âjt are the acceleration of the j-th
keypoint of the estimated pose and ground truth pose,
respectively.

D. EXPERIMENT 1: INVESTIGATING THE EFFECTIVENESS
OF OUR SILHOUETTE-BASED POSE ESTIMATION
To investigate the effectiveness of our silhouette-based
approach, we evaluate the accuracy of the pose estimation
when using our network on several different types of data.
We compare our method (denoted as Ours (Swin) in
Table. 1) against the following four baseline methods. Fig. 7
shows examples of input data used for training and testing,
respectively, for each baseline method.

• RGB: A method that trains our network on synthetic
RGB data and tests it on real RGB data taken with a 360◦

camera.
• Optical Flow: A method that uses optical flow obtained
by PWC-Net [59] from image sequences to train our
network. This is the same method as PoseReg proposed
by Yuan and Kitani [12]. The optical flows for training
and testing were obtained from the image sequences of
the RGB method above, respectively.

• Ours (SS): A method that trains the network on our
synthetic silhouette data and tests it on silhouette images
that are human-labeled regions extracted by applying
semantic segmentation to real equirectangular images.

• Ours (HRNet): A method proposed in [26] that trains
the network on our synthetic silhouette data and tests
it on silhouette images obtained by our silhouetting
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TABLE 1. Quantitative results of evaluating the accuracy of pose estimation on the MoCap test data and the in-the-wild data in Experiment 1. Bold values
show the best scores.

FIGURE 8. Qualitative results for each method on the MoCap test data (left) and the in-the-wild data (right) in Experiment 1.

process using a semantic segmentation model based on
HRNet.

E. EXPERIMENT 2: INVESTIGATING THE EFFECTIVENESS
OF OUR POSE ESTIMATION NETWORK
To verify the effectiveness of our pose estimation model
that uses time-series features, we conduct an experiment
to evaluate the accuracy of the pose estimation and the
smoothness of the output pose. However, there is currently
no 3D human pose estimation method using a wrist-mounted
360◦ camera, and there is no publicly available code for other
egocentric 3D human pose estimation methods applicable
to this experiment. Therefore, as baseline methods, we used
third-person-view-based existing 3D human pose estimation
networks. Please note that we re-trained those networks with
the same synthetic silhouette image dataset as our method for
a fair comparison. We evaluate the following four baseline
methods, including our model trained with pseudo-silhouette
images in the training data.

• Mobile Human Pose: A model proposed by
Choi et al. [60] for real-time 3D human pose estimation

from a single image, which is the most precise and
compact model that can be implemented in mobile
devices.

• Integral Human Pose: A model proposed by
Sun et al. [32] for 3D human pose estimation from a
single image, which is a simple and effective integral
regression model that unifies the heatmap representation
and the joint regression approach, sharing the merits of
both.

• Ours w/o Pseudo-Silhouette (PS): Our proposed
model, which was trained using only smooth synthetic
silhouette images without pseudo-silhouette images.

• Ours w/ Pseudo-Silhouette (PS): Our proposed model
aims to be robust against silhouette noise by mixing
pseudo-silhouette images in the training data.

V. RESULTS
A. RESULTS OF EXPERIMENT 1
Quantitative results of the pose estimation on the MoCap
test data and the in-the-wild data are shown in Table 1, and
qualitative results are shown in Fig. 8. The results show that
our method outperforms the baseline methods.
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FIGURE 9. Qualitative results for each method on the MoCap test data (left) and the in-the-wild data (right) in Experiment 2.

The RGB method had large errors due to the continuous
output of incorrect poses such as bending forward throughout
the sequence. This occurred because the synthetic training
data was not sufficiently photorealistic or diverse with
respect to the humanoid avatar’s appearance, background,
and lighting, i.e., there was a large domain gap between the
test data collected in the real environment.

Although the optical flow method occasionally estimated
correct walking and crouching motions, the overall output
was quite unstable and inaccurate. This is because the
real-world data contains complex optical flows such as
objects and lighting around the subject, which bring a domain
gap between the training data. In order to bridge this gap, it is
necessary to diversify the background objects and lighting in
the training data.

The SS method also had lower estimation accuracy than
the method using our silhouetting process. Due to the
distortion of the equirectangular images, the segmentation
of human regions often failed, resulting in very noisy
data with undesired regions other than the camera wearer’s
body.

In contrast, our proposed methods using silhouetting
processes (HRNet and Swin) were able to generate 3D human
poses close to the ground truth. In particular, using the
Swin Transformer model, i.e., a state-of-the-art semantic
segmentation method, we were able to correctly extract the
silhouette and estimate the pose with high accuracy.

These results show that our silhouette-based pose estima-
tion method using synthetic training data and a silhouetting
process for inference works well in bridging the domain gap
between synthetic data and real data.

TABLE 2. Quantitative evaluation results of pose estimation accuracy and
joint acceleration on the MoCap test data and the in-the-wild data in
Experiment 2.

B. RESULTS OF EXPERIMENT 2
For Experiment 2, quantitative results are shown in Table 2
and qualitative results are shown in Fig. 9. From the results
in Table 2, the highest accuracy of pose estimation was
achieved by the Integral method for the MoCap Test Data
and our method (Ours w/ PS) for the In-the-wild Data.
In contrast to the Integral method, which estimates joint
positions, ourmethod, which estimates joint angles, can cause
accumulation of joint angle estimation errors in end joints
such as hands and feet. While this may be the reason for
the inferior accuracy of our method, the differences between
them were not very large.

On the other hand, in the comparison of acceleration,
our proposed method is much smoother than the Mobile
and Integral methods. This is because the Mobile and
Integral methods estimate the pose frame-by-frame, and the
accuracy of the pose estimation is significantly decreased
for images with severe noise or occlusion. In contrast, our
network utilizes time-series features for inference, which
results in smooth and stable motion estimation even when
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such images are included in the sequence. In addition, our
method (Ours w/ PS) has the lowest error among the Eaccl,
indicating that the smoothness of the output poses is improved
by mixing pseudo-silhouette images during training. These
results demonstrate the effectiveness of our proposedmethod,
i.e., a pose estimation network that takes advantage of time
series features and pseudo-silhouette images to improve the
robustness of the model against silhouette noise.

VI. DISCUSSION AND LIMITATIONS
We proposed a new 3D pose estimation method using only
a single 360◦ camera attached to the wrist for various
applications such as motion recognition and motion analysis
in the fields of sports, medicine, animation, and others.
However, in order to use it for applications in real-world
scenarios, it will be necessary to resolve the following issues.

A. PRACTICAL SIZE AND WEIGHT OF SENSOR DEVICES
Although we proposed an approach that utilizes a minimal
number of devices, the commercial 360◦ camera we used in
our experiment was not small and light enough to be usable
on a daily basis on a wrist. However, since there are already
smartwatches equipped with cameras, we believe that we
may soon see a wristwatch-type device equipped with a 360◦

camera that can capture the wearer’s body with a wide field
of view, as shown in Fig. 1-(a).

B. VERSATILE AND HIGHLY ACCURATE POSE ESTIMATION
Although it is important to estimate various human poses for
practical use, our model is currently not capable of estimating
all human motions. However, since our method uses only
MoCap data to generate synthetic training data, it is quite easy
to prepare a more diverse data set using publicly available
MoCap data. We will verify how well our method is able to
estimate complex or unusual motions in a future study.

As for accuracy, there is a limit to the accuracy of silhouette
extraction because we are using a semantic segmentation
model trained on existing third-person images for egocentric
equirectangular images. However, by taking advantage of the
fact that foreground extraction using deep learning is not
affected by domain shift [61], we have a possibility to easily
create a deep learning model that can extract silhouettes with
high accuracy using synthetic data.

It is also important to be able to estimate the user’s
global position. Several methods using camera localization
algorithms have already been proposed [11], [16], [22],
and there is a possibility of utilizing them in our method.
However, we need to address the issue that the camera moves
in a more complex manner since it is attached to the wrist in
our method as opposed to the conventional methods where
the camera is attached to the head or chest.

C. REAL-TIME POSE ESTIMATION
Real-time pose estimation technology enables a variety of
new applications. Although our method can estimate the
poses from silhouette images in real-time (about 100 FPS on

an Intel Core i9 and a GeForce RTX 3090), the silhouetting
process runs at about 0.1 FPS. We believe that this can
be improved by designing the silhouette extraction network
described in Sec. VI-B to be able to process in real time.

VII. CONCLUSION
We presented a framework for estimating 3D human poses
using a single wrist-mounted 360◦ camera. Our pose esti-
mation network is trained only on synthetic silhouette image
data generated in the virtual environment. For inference, our
method uses binary silhouette images generated via a silhou-
etting process that takes real equirectangular images as input.
Our silhouette-based method could reduce data generation
costs and bridges the domain gap between synthetic and real
data, which has been an issue in previous research. As an
optional feature, we also proposed pseudo-silhouette image
generation for noise robustness using conditional adversarial
networks. Although we are currently assuming that there are
real images synchronized with the MoCap data, we plan to
train a generalized model by generating a larger dataset in
the future. The experimental results have demonstrated the
effectiveness of our silhouette-based approach and our pose
estimation network, which takes advantage of the time-series
features of the image sequences.

Our proposed framework can be easily extended to other
camera positions. We hope that our method will become
a stepping stone not only to further research on 3D pose
estimation using wearable cameras but also to the discovery
of new applications in the real world.
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